コード例 #1
0
ファイル: onpeak.py プロジェクト: Gjergj/OpenElectrophy
    def run(self, spikesorter, sign = '-', left_sweep = 1*pq.ms, right_sweep = 1*pq.ms,
                peak_method = 'biggest_amplitude'):
        sps = spikesorter

        sr = sps.sig_sampling_rate
        swl = int((left_sweep*sr).simplified)
        swr = int((right_sweep*sr).simplified)
        #~ print swl, (left_sweep*sr)
        wsize = swl + swr + 1
        trodness = sps.filtered_sigs.shape[0]
        
        # clean
        remove_limit_spikes(spikesorter, swl, swr*3)
        
        # Initialize
        spike_waveforms = initialize_waveform(spikesorter, wsize)
        sps.wf_sampling_rate = sps.sig_sampling_rate
        sps.left_sweep =swl
        sps.right_sweep = swr
        
        
        # take individual waveform
        n = 0
        for s, indexes in enumerate(sps.spike_index_array):
            peak_indexes = get_following_peak_multi_channel(indexes, sps.filtered_sigs[:,s], sign,
                                                    method = peak_method)
            for ind in peak_indexes :
                for c in range(len(sps.rcs)):
                    sig = sps.filtered_sigs[c, s]
                    spike_waveforms[n,c, :] = sig[ind-swl:ind+swr+1]
                n += 1
        
        sps.spike_waveforms = spike_waveforms
コード例 #2
0
    def run(self, spikesorter, sign = '-', left_sweep = 1*pq.ms, right_sweep = 1*pq.ms):
        sps = spikesorter

        sr = sps.sig_sampling_rate
        swl = int((left_sweep*sr).simplified)
        swr = int((right_sweep*sr).simplified)
        wsize = swl + swr + 1
        trodness = sps.filtered_sigs.shape[0]
        
        # clean
        remove_limit_spikes(spikesorter, swl, swr)
        
        # Initialize
        initialize_waveform(spikesorter, wsize)
        sps.wf_sampling_rate = sps.sig_sampling_rate
        sps.left_sweep =swl
        sps.right_sweep = swr
        
        # take individual waveform
        n = 0
        for s, indexes in enumerate(sps.spike_index_array):
            for ind in indexes :
                for c in range(len(sps.rcs)):
                    sig = sps.filtered_sigs[c, s]
                    sps.spike_waveforms[n,c, :] = sig[ind-swl:ind+swr+1]
                n += 1
コード例 #3
0
    def run(self,
            spikesorter,
            left_sweep=1 * pq.ms,
            right_sweep=1 * pq.ms,
            waveform_from='filtered signals'):
        sps = spikesorter

        sr = sps.sig_sampling_rate
        swl = int((left_sweep * sr).simplified)
        swr = int((right_sweep * sr).simplified)
        wsize = swl + swr + 1
        trodness = sps.filtered_sigs.shape[0]

        # clean
        remove_limit_spikes(spikesorter, swl, swr)

        # Initialize
        spike_waveforms = initialize_waveform(spikesorter, wsize)
        sps.wf_sampling_rate = sps.sig_sampling_rate
        sps.left_sweep = swl
        sps.right_sweep = swr

        # take individual waveform
        n = 0
        for s, indexes in enumerate(sps.spike_index_array):
            for ind in indexes:
                for c in range(len(sps.rcs)):
                    if waveform_from == 'filtered signals':
                        sig = sps.filtered_sigs[c, s]
                    elif waveform_from == 'full band signals':
                        sig = sps.full_band_sigs[c, s]
                    spike_waveforms[n, c, :] = sig[ind - swl:ind + swr + 1]
                n += 1

        sps.spike_waveforms = spike_waveforms
コード例 #4
0
ファイル: onpeak.py プロジェクト: dasantonym/OpenElectrophy
    def run(self,
            spikesorter,
            sign='-',
            left_sweep=1 * pq.ms,
            right_sweep=1 * pq.ms,
            peak_method='biggest_amplitude'):
        sps = spikesorter

        sr = sps.sig_sampling_rate
        swl = int((left_sweep * sr).simplified)
        swr = int((right_sweep * sr).simplified)
        #~ print swl, (left_sweep*sr)
        wsize = swl + swr + 1
        trodness = sps.filtered_sigs.shape[0]

        # clean
        remove_limit_spikes(spikesorter, swl, swr * 3)

        # Initialize
        spike_waveforms = initialize_waveform(spikesorter, wsize)
        sps.wf_sampling_rate = sps.sig_sampling_rate
        sps.left_sweep = swl
        sps.right_sweep = swr

        # take individual waveform
        n = 0
        for s, indexes in enumerate(sps.spike_index_array):
            peak_indexes = get_following_peak_multi_channel(
                indexes, sps.filtered_sigs[:, s], sign, method=peak_method)
            for ind in peak_indexes:
                for c in range(len(sps.rcs)):
                    sig = sps.filtered_sigs[c, s]
                    spike_waveforms[n, c, :] = sig[ind - swl:ind + swr + 1]
                n += 1

        sps.spike_waveforms = spike_waveforms
コード例 #5
0
    def run(self, spikesorter,  left_sweep = 1*pq.ms, right_sweep = 1*pq.ms,
                            sweep_factor_for_interpolation = 3,
                            shift_estimation_method = 'taylor order1',
                            shift_method = 'sinc',
                            max_iter= 1,
                            
                            ):
        sps = spikesorter

        sr = sps.sig_sampling_rate
        swl = int((left_sweep*sr).simplified)
        swr = int((right_sweep*sr).simplified)
        #~ print swl, (left_sweep*sr)
        wsize = swl + swr + 1
        trodness = sps.filtered_sigs.shape[0]
        
        # For interpolation we take a larger sweep in a first time.
        swl2 = int(sweep_factor_for_interpolation*swl)
        swr2 = int(sweep_factor_for_interpolation*swr)
        wisze2 = swl2 + swr2 + 1
        
        # clean
        remove_limit_spikes(spikesorter, swl2, swr2)
        
        
        # Initialize
        wfs = initialize_waveform(spikesorter, wsize)
        sps.wf_sampling_rate = sps.sig_sampling_rate
        sps.left_sweep =swl
        sps.right_sweep = swr
        
        
        # take waveform in signal
        trodness = len(spikesorter.rcs)
        n_spike = wfs.shape[0]
        large_wfs = np.empty((n_spike, trodness, wisze2), dtype = float) # non aligned larger waveform
        
        
        n = 0
        for s, indexes in enumerate(sps.spike_index_array):
            for ind in indexes :
                for c in range(len(sps.rcs)):
                    sig = sps.filtered_sigs[c, s]
                    wfs[n,c, :] = sig[ind-swl:ind+swr+1]
                    large_wfs[n,c, :] = sig[ind-swl2:ind+swr2+1]
                n += 1
        
        clusters = self.clusters = sps.cluster_names.keys()
        self.deltas = deltas = np.zeros(n_spike)
        
        self.all_centers =  [ ]
        self.all_centers_mad = [ ]
        self.all_deltas = [ ]
        
        
        for iter in range(max_iter):
            print iter
            # TODO : sctop criterium
            flat_wfs = wfs.reshape(n_spike, -1)
           
            centers = { }
            mads = { }
            for c in clusters:
                ind = sps.spike_clusters==c
                centers[c] = np.median(flat_wfs[ind,:], axis=0)
                mads[c] = np.median(np.abs(flat_wfs[ind,:]-centers[c]), axis=0) / .6745
            
            
            # for plotting
            self.all_centers.append(centers)
            self.all_centers_mad.append(mads)
            
            # shift estimation by clusters
            new_deltas = np.zeros(n_spike)
            for c in clusters:
                ind = sps.spike_clusters==c
                if shift_estimation_method == 'taylor order1':
                    center_D = np.r_[0,(centers[c][2:] - centers[c][:-2])/2, 0]#first derivative
                    new_deltas[ind] = np.sum((flat_wfs[ind]-centers[c])*center_D , axis = 1)/np.sum(center_D**2)
                    
                elif shift_estimation_method == 'taylor order2':
                    center_D = np.r_[0,(centers[c][2:] - centers[c][:-2])/2, 0] #first derivative
                    center_DD = np.r_[0,(center_D[2:] - center_D[:-2])/2, 0]#second derivative
                    #~ for i in range(n_spike):
                    for i in np.where(ind):
                        def error(delta):
                            return np.sum((flat_wfs[i,:]-centers[c]-delta*center_D-delta**2*center_DD/2)**2)
                        res = minimize(error,[0.], method = 'BFGS')
                        new_deltas[i] = res.x

            
            deltas += new_deltas
            self.all_deltas.append(deltas.copy())


            base = np.arange(large_wfs.shape[2])
            new_base = np.arange(swl2+1-swl,swl2+2+swr)
            # apply shift on waveform by interpolation
            if shift_method == 'sinc':
                for i in range(n_spike):
                    for c in range(large_wfs.shape[1]):
                        half = base.size//2
                        kernel = np.sinc(np.arange(-half, half)-deltas[i]+1)
                        wfs[i,c,:] = convolve(large_wfs[i,c,:], kernel, mode = 'same')[swl2+1-swl:swl2+2+swr]
                
            elif shift_method == 'spline':
                for i in range(n_spike):
                    for c in range(large_wfs.shape[1]):
                        interpolator = interp1d(base, large_wfs[i,c,:], kind = 1)
                        wfs[i,c,:] = interpolator(new_base-deltas[i])
            
            elif shift_method == 'lanczos':
                #TODO!!!
                pass
        
        spikesorter.spike_waveforms = wfs
コード例 #6
0
    def run(
        self,
        spikesorter,
        left_sweep=1 * pq.ms,
        right_sweep=1 * pq.ms,
        sweep_factor_for_interpolation=3,
        shift_estimation_method='taylor order1',
        shift_method='sinc',
        max_iter=1,
    ):
        sps = spikesorter

        sr = sps.sig_sampling_rate
        swl = int((left_sweep * sr).simplified)
        swr = int((right_sweep * sr).simplified)
        #~ print swl, (left_sweep*sr)
        wsize = swl + swr + 1
        trodness = sps.filtered_sigs.shape[0]

        # For interpolation we take a larger sweep in a first time.
        swl2 = int(sweep_factor_for_interpolation * swl)
        swr2 = int(sweep_factor_for_interpolation * swr)
        wisze2 = swl2 + swr2 + 1

        # clean
        remove_limit_spikes(spikesorter, swl2, swr2)

        # Initialize
        wfs = initialize_waveform(spikesorter, wsize)
        sps.wf_sampling_rate = sps.sig_sampling_rate
        sps.left_sweep = swl
        sps.right_sweep = swr

        # take waveform in signal
        trodness = len(spikesorter.rcs)
        n_spike = wfs.shape[0]
        large_wfs = np.empty((n_spike, trodness, wisze2),
                             dtype=float)  # non aligned larger waveform

        n = 0
        for s, indexes in enumerate(sps.spike_index_array):
            for ind in indexes:
                for c in range(len(sps.rcs)):
                    sig = sps.filtered_sigs[c, s]
                    wfs[n, c, :] = sig[ind - swl:ind + swr + 1]
                    large_wfs[n, c, :] = sig[ind - swl2:ind + swr2 + 1]
                n += 1

        clusters = self.clusters = sps.cluster_names.keys()
        self.deltas = deltas = np.zeros(n_spike)

        self.all_centers = []
        self.all_centers_mad = []
        self.all_deltas = []

        for iter in range(max_iter):
            print iter
            # TODO : sctop criterium
            flat_wfs = wfs.reshape(n_spike, -1)

            centers = {}
            mads = {}
            for c in clusters:
                ind = sps.spike_clusters == c
                centers[c] = np.median(flat_wfs[ind, :], axis=0)
                mads[c] = np.median(np.abs(flat_wfs[ind, :] - centers[c]),
                                    axis=0) / .6745

            # for plotting
            self.all_centers.append(centers)
            self.all_centers_mad.append(mads)

            # shift estimation by clusters
            new_deltas = np.zeros(n_spike)
            for c in clusters:
                ind = sps.spike_clusters == c
                if shift_estimation_method == 'taylor order1':
                    center_D = np.r_[0, (centers[c][2:] - centers[c][:-2]) / 2,
                                     0]  #first derivative
                    new_deltas[ind] = np.sum(
                        (flat_wfs[ind] - centers[c]) * center_D,
                        axis=1) / np.sum(center_D**2)

                elif shift_estimation_method == 'taylor order2':
                    center_D = np.r_[0, (centers[c][2:] - centers[c][:-2]) / 2,
                                     0]  #first derivative
                    center_DD = np.r_[0, (center_D[2:] - center_D[:-2]) / 2,
                                      0]  #second derivative
                    #~ for i in range(n_spike):
                    for i in np.where(ind):

                        def error(delta):
                            return np.sum((flat_wfs[i, :] - centers[c] -
                                           delta * center_D -
                                           delta**2 * center_DD / 2)**2)

                        res = minimize(error, [0.], method='BFGS')
                        new_deltas[i] = res.x

            deltas += new_deltas
            self.all_deltas.append(deltas.copy())

            base = np.arange(large_wfs.shape[2])
            new_base = np.arange(swl2 + 1 - swl, swl2 + 2 + swr)
            # apply shift on waveform by interpolation
            if shift_method == 'sinc':
                for i in range(n_spike):
                    for c in range(large_wfs.shape[1]):
                        half = base.size // 2
                        kernel = np.sinc(
                            np.arange(-half, half) - deltas[i] + 1)
                        wfs[i,
                            c, :] = convolve(large_wfs[i, c, :],
                                             kernel,
                                             mode='same')[swl2 + 1 - swl:swl2 +
                                                          2 + swr]

            elif shift_method == 'spline':
                for i in range(n_spike):
                    for c in range(large_wfs.shape[1]):
                        interpolator = interp1d(base,
                                                large_wfs[i, c, :],
                                                kind=1)
                        wfs[i, c, :] = interpolator(new_base - deltas[i])

            elif shift_method == 'lanczos':
                #TODO!!!
                pass

        spikesorter.spike_waveforms = wfs