def generate_train_data(self, no_batches, batch_size, trajectories_data_path, generate_train_data, gru_dir): tl.set_log(gru_dir, 'generate_train_data') train_data = tl.generate_trajectories(self.env, no_batches, batch_size, trajectories_data_path) return train_data
def main(): default_server_ip = "127.0.0.1" args = mgArg.mg_arg(default_server_ip) tools.set_log(args.logName, args.notverbose) while True: secure_communication = tools.SecureCommunication( args.RHOST, args.RPORT) secure_communication.secure_connect() tools.echo_service(secure_communication, args.RHOST, args.logName) secure_communication.clean_socket()
try: fsm_object = fsm_process.ProcessFSM(env) # *********************************************************************************** # Generating training data * # *********************************************************************************** no_batches = 10000 if args.generate_train_data: train_data = fsm_object.generate_train_data( no_batches, args.batch_size, trajectories_data_path, args.generate_train_data, gru_dir) # *********************************************************************************** # GRU Network * # *********************************************************************************** if args.gru_train or args.gru_test: tl.set_log(gru_dir, 'train' if args.gru_train else 'test') gru_net = GRUNet(len(obs), args.gru_size, int(env.action_space.n)) if args.cuda: gru_net = gru_net.cuda() if args.gru_train: logging.info(['No Training Performed!!']) logging.warning( 'We assume that we already have a pre-trained model @ {}'. format(gru_net_path)) tl.write_net_readme(gru_net, gru_dir, info={}) if args.gru_test: test_performance = fsm_object.test_gru(gru_net, gru_net_path, args.cuda) # *********************************************************************************** # Generating BottleNeck training data *
# acc_data = dict with dates as keys and array with jobs as value # Get passed args script.collect_args() # Process args if script.is_arg('h') or script.is_arg('help'): print_help() sys.exit(0) if script.is_arg('o'): PATH_OUTPUT = script.get_arg('o')[0] if script.is_arg('output'): PATH_OUTPUT = script.get_arg('output')[0] if script.is_arg('l'): tools.set_log(script.get_arg('l')[0]) if script.is_arg('logfile'): tools.set_log(script.get_arg('logfile')[0]) #Get torque accounting files files = script.get_arg(None) if files == None: tools.error('please pass at least one Torque accounting file!') print_help() sys.exit(1) acc_data = torque.parse_accounting(files) #Create Object User and Job