コード例 #1
0
    def array2data2D(self,
                     data,
                     weights=None,
                     normed=False,
                     binning=1,
                     reBin=None):
        """
        Convert array of data to internal format
        - Designed for arrays of raw, un-binned data.
        - If you pass values here from an existing histogram ('weights' is not None
          and the 'data' param is just bin centers), it is possible to re-bin
          this histogram using the 'reBin' keyword
        """
        try:
            x = data['x']
            y = data['y']
        except TypeError:
            x = data[0]
            y = data[1]

        data, bins_x, bins_y = np.histogram2d(x,
                                              y,
                                              bins=binning,
                                              normed=normed,
                                              weights=weights)

        results = Hist()
        results.content = data.flatten()  # data is a ndarray (nxbins,nybins)
        results.bins = {'x': bins_x, 'y': bins_y}

        xcenter, ycenter = tools.dummy_bins2D(tools.midpoints(bins_x),
                                              tools.midpoints(bins_y))
        xwidth, ywidth = tools.dummy_bins2D(tools.widths(bins_x),
                                            tools.widths(bins_y))

        results.center = {'x': xcenter, 'y': ycenter}
        results.width = {'x': xwidth, 'y': ywidth}

        results.error = np.sqrt(data)
        if weights is not None:
            # scipy.stats to get sumw2 (x,y,weights should have the same shape)
            results.error = results.sumw2_2D(xdata=x, ydata=y, values=weights)

        if reBin is not None:
            # re-binning after making data from array, likely that the user
            # passed in binned data and wants to re-bin.
            results.Rebin2D(reBin)
            if normed: results.normalize()  # normalize after re-binning

        results.xbins = results.bins['x']
        results.ybins = results.bins['y']
        results.xcenter = results.center['x']
        results.ycenter = results.center['y']
        results.xwidth = results.width['x']
        results.ywidth = results.width['y']

        return results


## THE END ##
コード例 #2
0
    def array2data(self,
                   data,
                   weights=None,
                   normed=False,
                   binning=1,
                   reBin=None):
        """
        Convert array of data to internal format
        - Designed for arrays of raw, un-binned data.
        - If you pass values here from an existing histogram ('weights' is not None
          and the 'data' param is just bin centers), it is possible to re-bin
          this histogram using the 'reBin' keyword
        """
        data, bins = np.histogram(data,
                                  bins=binning,
                                  weights=weights,
                                  normed=normed)

        results = Hist()
        results.content = data
        results.bins = bins
        results.center = tools.midpoints(bins)
        results.width = tools.widths(bins)

        results.error = np.sqrt(data)
        if weights is not None:
            # numpy digitize to get sumw2
            results.error = results.sumw2_1D(xdata=data, values=weights)

        if reBin is not None:
            results.Rebin(reBin)
            if normed: results.normalize()  # normalize after re-binning

        return results
コード例 #3
0
ファイル: hist.py プロジェクト: demarley/hepPlotter
    def Rebin(self, reBin):
        if isinstance(reBin, (int, long)):
            # merge bins together by some integer factor 'reBin'
            if reBin <= 0 or self.content.size % reBin:
                print " WARNING : Cannot re-bin with {0}".format(reBin)
                print "         : Not re-binning the histogram"
                return
            else:
                reBin = np.array(
                    [self.bins[i] for i in range(0, self.bins.size, reBin)])
        elif not all((i in self.bins) for i in reBin):
            print " WARNING : Cannot re-bin with {0}".format(reBin)
            print "         : Not re-binning the histogram"
            return

        # re-bin the histogram (by making a new histogram)
        bin_contents, bin_edges = np.histogram(self.center,
                                               bins=reBin,
                                               weights=self.content)

        self.content = bin_contents
        self.bins = bin_edges
        self.center = tools.midpoints(bin_edges)
        self.width = tools.widths(bin_edges)
        self.error = self.sumw2_1D(
            xdata=self.center)  # use data for re-binning, not bin content

        return
コード例 #4
0
    def hist2data2D(self, histo, reBin=None, normed=False):
        """Convert ROOT histogram for internal use."""
        bin_contents, (xbin_edges, ybin_edges) = histo.numpy()
        bin_contents = bin_contents.T

        if len(histo.allvariances) > 0:
            bin_errors = histo.allvariances[
                1:-1, 1:
                -1]  # variances() doesn't produce correct values in 2D right now
        else:
            bin_errors = np.sqrt(bin_contents)

        xbin_centers, ybin_centers = tools.dummy_bins2D(
            tools.midpoints(xbin_edges), tools.midpoints(ybin_edges))
        xbin_widths, ybin_widths = tools.dummy_bins2D(tools.widths(xbin_edges),
                                                      tools.widths(ybin_edges))

        results = Hist()
        results.content = bin_contents.flatten()
        results.error = bin_errors.flatten()
        results.bins = {'x': xbin_edges, 'y': ybin_edges}
        results.center = {'x': xbin_centers, 'y': ybin_centers}
        results.width = {'x': xbin_widths, 'y': ybin_widths}

        if reBin is not None:
            results.Rebin2D(reBin)
        if normed: results.normalize()

        # Set extra attributes (placeholders for the moment)
        results.xbins = results.bins['x']
        results.ybins = results.bins['y']
        results.xcenter = results.center['x']
        results.ycenter = results.center['y']
        results.xwidth = results.width['x']
        results.ywidth = results.width['y']

        return results


## THE END ##
コード例 #5
0
    def hist2data(self, histo, reBin=None, normed=False):
        """Convert ROOT histogram for internal use."""
        bin_contents, bin_edges = histo.numpy()

        results = Hist()
        results.content = bin_contents
        results.bins = bin_edges
        results.center = tools.midpoints(bin_edges)
        results.width = tools.widths(bin_edges)

        if len(histo.variances) > 0:
            results.error = histo.variances
        else:
            results.error = np.sqrt(bin_contents)

        if reBin is not None:
            results.Rebin(reBin)
        if normed: results.normalize()

        return results
コード例 #6
0
ファイル: hist.py プロジェクト: demarley/hepPlotter
    def Rebin2D(self, reBin):
        """Re-bin 2D histogram"""
        xbins = self.bins['x']
        ybins = self.bins['y']
        nbinsx = len(xbins) - 1
        nbinsy = len(ybins) - 1

        xrebin = xbins.copy()  # default to original binning
        yrebin = ybins.copy()  # default to original binning

        if isinstance(reBin, (int, long)):
            # new bins should be merged bin edges
            if reBin <= 0 or nbinsx % reBin or nbinsy % reBin:
                print " WARNING : Cannot re-bin with {0}".format(reBin)
                print "         : Not re-binning the histogram"
                return
            else:
                xrebin = np.array(
                    [xbins[i] for i in range(0, nbinsx + 1, reBin)])
                yrebin = np.array(
                    [ybins[i] for i in range(0, nbinsy + 1, reBin)])
        else:
            # new bins should be new array bin edges that must match previous binning:
            #   can't re-bin [0,1,4,6] into [0,3,6]
            try:
                xrebin = reBin['x']
                yrebin = reBin['y']
            except TypeError:
                xrebin = reBin[0]
                yrebin = reBin[1]

            if (not all((i in xbins) for i in xrebin)) or (not all(
                (i in ybins) for i in yrebin)):
                print " WARNING : Cannot re-bin 2D histogram using {0}".format(
                    reBin)
                print "         : Not re-binning histogram"
                return

        # - generate dummy values of the bin centers and pass data as weights
        xbins, ybins = tools.dummy_bins2D(tools.midpoints(xbins),
                                          tools.midpoints(ybins))
        rb_hist2d = np.histogram2d(xbins,
                                   ybins,
                                   bins=[xrebin, yrebin],
                                   weights=self.content.tolist())
        bin_contents, xbin_edges, ybin_edges = rb_hist2d

        self.content = bin_contents.flatten()
        self.bins = {'x': xbin_edges, 'y': ybin_edges}

        xbin_center, ybin_center = tools.dummy_bins2D(
            tools.midpoints(xbin_edges), tools.midpoints(ybin_edges))
        xbin_width, ybin_width = tools.dummy_bins2D(tools.widths(xbin_edges),
                                                    tools.widths(ybin_edges))
        self.center = {'x': xbin_center, 'y': ybin_center}
        self.width = {'x': xbin_width, 'y': ybin_width}

        if _scipy_available:
            self.error = self.sumw2_2D(xdata=xbins, ydata=ybins)
        else:
            self.error = np.sqrt(bin_contents.flatten())

        return


## THE END ##