コード例 #1
0
ファイル: train_node_classify.py プロジェクト: Linear95/DetGP
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=config.GPU_USAGE)
with tf.Graph().as_default():
    sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))

    with sess.as_default():
        model = DetGP(data.num_vocab, data.num_nodes, data.text,
                      data.train_edges)
        opt = tf.train.AdamOptimizer(config.lr)
        train_op = opt.minimize(model.total_loss)

        sess.run(tf.global_variables_initializer())
        inducing_points = get_initial_inducing(sess, model,
                                               config.inducing_num)
        model.load_inducing_points(inducing_points)
        #training
        log.write('start training : {0}'.format(model_name))

        for epoch in range(config.num_epoch):
            loss_epoch = 0
            batches = data.generate_batches()
            num_batch = len(batches)
            for i in range(num_batch):
                batch = batches[i]

                node1, node2, node3 = zip(*batch)
                node1, node2, node3 = np.array(node1), np.array(
                    node2), np.array(node3)
                #text1, text2,text3=data.text[node1],data.text[node2],data.text[node3]
                feed_dict = {
                    # model.edges: data.edges,
                    # model.text_all: data.text,
コード例 #2
0
ファイル: train_link_predict.py プロジェクト: Linear95/DetGP
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=config.GPU_USAGE)
with tf.Graph().as_default():
    sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))

    with sess.as_default():
        model = DetGP(data.num_vocab, data.num_nodes, data.text,
                      data.train_edges)
        opt = tf.train.AdamOptimizer(config.lr)
        train_op = opt.minimize(model.total_loss)

        sess.run(tf.global_variables_initializer())
        inducing_points = get_initial_inducing(sess, model,
                                               config.inducing_num)
        model.load_inducing_points(inducing_points)
        #training
        log.write('start training : {0}'.format(model_name))
        auc_best = 0.

        for epoch in range(config.num_epoch):
            loss_epoch = 0
            batches = data.generate_batches()
            num_batch = len(batches)
            for i in range(num_batch):
                batch = batches[i]
                node1, node2, node3 = zip(*batch)
                node1, node2, node3 = np.array(node1), np.array(
                    node2), np.array(node3)
                feed_dict = {
                    model.node_a_ids: node1,
                    model.node_b_ids: node2,
                    model.node_n_ids: node3