コード例 #1
0
def correction_mul(x, batch_std, running_std, y, channel, kernel_name="correction_mul"):
    """CorrectionMul op"""
    shape = x.get("shape")
    data_format = x.get("format")
    util.check_kernel_name(kernel_name)
    util.check_shape_rule(shape)
    util.check_shape_size(shape, SHAPE_SIZE_LIMIT)
    check_list = ["float16", "float32"]
    inp_dtype = x.get("dtype").lower()
    if not inp_dtype in check_list:
        raise RuntimeError("Dtype of input only support float16, float32")

    # shape = util.shape_refine(shape)
    x_t = tvm.placeholder(shape, name="x", dtype=inp_dtype)
    shape_c = [1] * len(shape)
    shape_c[channel] = batch_std.get("ori_shape")[0]
    if data_format == "NC1HWC0" and channel == 1:
        shape_c = batch_std.get("shape")
    batch_std_t = tvm.placeholder(shape_c, name="batch_std", dtype=inp_dtype)
    running_std_t = tvm.placeholder(shape_c, name="running_std", dtype=inp_dtype)
    res = correction_mul_compute(x_t, batch_std_t, running_std_t, kernel_name)

    with tvm.target.cce():
        sch = generic.auto_schedule(res)

    config = {"print_ir": False,
              "name": kernel_name,
              "tensor_list": [x_t, batch_std_t, running_std_t, res]}

    te.lang.cce.cce_build_code(sch, config)
コード例 #2
0
def custom_l2_loss(shape,
                   dtype,
                   kernel_name="cce_tf_l2_loss",
                   need_build=False,
                   need_print=False):
    """
    Computes half the L2 norm of a tensor without the sqrt:
    output = sum(t ** 2) / 2

    Parameters
    ----------
    shape : shape of data

    dtype : source data type, only support float16, float32

    kernel_name : cce kernel name, default value is "cce_reductionLayer"

    need_buid : if need to build CCEC kernel, default value is False

    need_print : if need to print the ir, default value is False

    Returns
    -------
    None

    """
    util.check_kernel_name(kernel_name)
    util.check_shape_rule(shape)
    util.check_shape_size(shape, SHAPE_SIZE_LIMIT)

    util.check_reduce_shape_rule(shape)
    check_list = ["float16", "float32"]
    if not dtype.lower() in check_list:
        raise RuntimeError("tf_l2_loss_cce only support %s while dtype is %s" %
                           (",".join(check_list), dtype))

    shape, axis = util.simplify_axis_shape(shape, range(len(shape)))

    inp_dtype = dtype.lower()
    data_input = tvm.placeholder(shape, name="data_input", dtype=inp_dtype)

    coeff_sqrt = tvm.const(1.0 / (2**(0.5)), dtype=inp_dtype)

    data_mul = te.lang.cce.vmuls(data_input, coeff_sqrt)
    data_sqr = te.lang.cce.vmul(data_mul, data_mul)
    res = te.lang.cce.sum(data_sqr, axis)

    with tvm.target.cce():
        sch = generic.auto_schedule(res)

    config = {
        "print_ir": need_print,
        "need_build": need_build,
        "name": kernel_name,
        "tensor_list": [data_input, res]
    }
    te.lang.cce.cce_build_code(sch, config)
コード例 #3
0
def custom_sign(shape,
                dtype,
                kernel_name="cce_custom_sign",
                need_build=False,
                need_print=False):
    """
                                  x*32768
    algrithm: sign = round(-------------------------)
                            2 ** (-15) + |x*32768|

    calculating data type is float16

    Parameters
    ----------
    shape : shape of data

    dtype : the data type, assume src_dtype equals dst_dtype,
            only support float16, float32, int32

    kernel_name : cce kernel name, default value is "cce_sign"

    need_buid : if need to build CCEC kernel, default value is False

    need_print : if need to print the ir, default value is False

    Returns
    -------
    None

    """
    util.check_kernel_name(kernel_name)
    util.check_shape_rule(shape)
    util.check_shape_size(shape, SHAPE_SIZE_LIMIT)

    check_list = ["float16", "float32", "int32"]
    if not dtype.lower() in check_list:
        raise RuntimeError(
            "custom_sign_cce only support %s while dtype is %s" %
            (",".join(check_list), dtype))

    shape = util.shape_refine(shape)
    inp_dtype = dtype.lower()
    data = tvm.placeholder(shape, name="data", dtype=inp_dtype)
    with tvm.target.cce():
        res = custom_sign_compute([data], shape, dtype, kernel_name,
                                  need_build, need_print)

        sch = generic.auto_schedule(res)

    config = {
        "print_ir": need_print,
        "need_build": need_build,
        "name": kernel_name,
        "tensor_list": [data, res]
    }
    te.lang.cce.cce_build_code(sch, config)
コード例 #4
0
def correction_mul_grad(dout, x, batch_std, running_std, dx, mul_dx, channel, kernel_name="correction_mul_grad"):
    """CorrectionMulGrad op"""
    shape_dout = dout.get("shape")
    shape_x = dout.get("shape")

    dtype_dout = dout.get("dtype")
    dtype_x = x.get("dtype")
    dtype_batch_std = batch_std.get("dtype")
    dtype_running_std = running_std.get("dtype")

    inp_dtype_dout = dtype_dout.lower()
    inp_dtype_x = dtype_x.lower()
    inp_dtype_batch_std = dtype_batch_std.lower()
    inp_dtype_running_std = dtype_running_std.lower()

    util.check_dtype_rule(inp_dtype_dout, ("float16", "float32"))
    util.check_dtype_rule(inp_dtype_x, ("float16", "float32"))
    util.check_dtype_rule(inp_dtype_batch_std, ("float16", "float32"))
    util.check_dtype_rule(inp_dtype_running_std, ("float16", "float32"))
    util.compare_tensor_dict_key(dout, x, "dtype")
    util.compare_tensor_dict_key(dout, x, "shape")
    util.compare_tensor_dict_key(dx, x, "shape")
    util.compare_tensor_dict_key(batch_std, running_std, "shape")
    util.compare_tensor_dict_key(dx, mul_dx, "shape")

    util.check_kernel_name(kernel_name)
    util.check_shape_rule(shape_x)
    util.check_shape_size(shape_x, SHAPE_SIZE_LIMIT)

    data_format = dout.get("format")
    ori_format = dout.get("format")
    if data_format.upper() not in ("NC1HWC0", "NCHW"):
        raise RuntimeError("Un supported data format {}".format(data_format))
    if data_format.upper() == "NCHW" and ori_format != "NCHW":
        raise RuntimeError("data_format(NCHW) must same as ori_format")

    shape_c = [1] * len(shape_x)
    shape_c[channel] = batch_std.get("ori_shape")[0]
    if data_format == "NC1HWC0" and channel == 1:
        shape_c = batch_std.get("shape")

    dout_t = tvm.placeholder(shape_dout, name="dout", dtype=inp_dtype_dout)
    x_t = tvm.placeholder(shape_x, name="x", dtype=inp_dtype_x)
    batch_std_t = tvm.placeholder(shape_c, name="batch_std", dtype=inp_dtype_batch_std)
    running_std_t = tvm.placeholder(shape_c, name="running_std", dtype=inp_dtype_running_std)
    res_list = correction_mul_grad_compute(dout_t, x_t, batch_std_t, running_std_t, channel, data_format, kernel_name)

    with tvm.target.cce():
        sch = generic.auto_schedule(res_list)

    tensor_list = [dout_t, x_t, batch_std_t, running_std_t] + res_list
    config = {"print_ir": False,
              "name": kernel_name,
              "tensor_list": tensor_list}

    te.lang.cce.cce_build_code(sch, config)
コード例 #5
0
def custom_logical_not(shape,
                       dtype,
                       kernel_name="cce_tf_logical_not",
                       need_build=False,
                       need_print=False):
    """
    logical not for the input tensor

    Parameters
    ----------
    shape : input shape of data

    dtype : the data type, support bool

    kernel_name : cce kernel name, default value is "cce_logical_not"

    need_buid : if need to build CCEC kernel, default value is False

    need_print : if need to print the ir, default value is False

    Returns
    -------
    None

    """
    util.check_kernel_name(kernel_name)
    util.check_shape_rule(shape)

    check_list = ["bool"]
    if not dtype.lower() in check_list:
        raise RuntimeError(
            "logical_not_cce ony supports %s while dtype is %s" %
            (",".join(check_list), dtype))

    util.check_shape_size(shape, SHAPE_SIZE_LIMIT)

    inp_dtype = dtype.lower()

    data = tvm.placeholder(shape, name="data", dtype=inp_dtype)

    with tvm.target.cce():

        result = tvm.compute(
            shape,
            lambda *i: tvm.select(data[i] is True, False, True),
            name="result")

        schedule = tvm.create_schedule(result.op)

        if need_print:
            with build_config:
                print(tvm.lower(schedule, [data, result], simple_mode=True))
        if need_build:
            with build_config:
                tvm.build(schedule, [data, result], "cce", name=kernel_name)
コード例 #6
0
ファイル: segment_min.py プロジェクト: gekowa/ascend-opp
def segment_min(input_tensor, segment_ids, output_y, kernel_name="segment_min"):
    """
    calculating data

    Parameters
    ----------
    input_tensor : dict
        shape and dtype of input
    segment_ids : list int
        the list of segment_ids
    output_y : dict
        shape and dtype of output,
    kernel_name : str
        kernel name, default value is "segment_min"

    Returns
    -------
    None
    """


    shape_tensor = input_tensor.get("shape")
    dtype_tensor = input_tensor.get("dtype")
    input_tensor_dtype = dtype_tensor.lower()

    # judgement of ids
    length_ids = len(segment_ids)
    if length_ids != shape_tensor[0]:
        raise RuntimeError("length of ids must equal to shape[0] of input_tensor!")
    ids_is_1d_and_sorted(segment_ids)

    check_tuple_tensor = ("float16", "float32", "int32", "int8", "uint8")
    util.check_dtype_rule(dtype_tensor, check_tuple_tensor)
    util.check_shape_size(shape_tensor, SHAPE_SIZE_LIMIT)
    util.check_shape_rule(shape_tensor) # 校验轴

    if dtype_tensor == "int8":
        data_input = tvm.placeholder(shape_tensor, name="data_input", dtype=input_tensor_dtype)
        data_input1 = te.lang.cce.cast_to(data_input, "float16")
        res1 = segment_min_compute(data_input1, segment_ids, output_y, kernel_name)
        res = te.lang.cce.cast_to(res1, "int8")
    else:
        data_input = tvm.placeholder(shape_tensor, name="data_input", dtype=input_tensor_dtype)
        res = segment_min_compute(data_input, segment_ids, output_y, kernel_name)

    with tvm.target.cce():
        schedule = generic.auto_schedule(res)

    config = {"name": kernel_name,
              "tensor_list": [data_input, res]}

    te.lang.cce.cce_build_code(schedule, config)
コード例 #7
0
ファイル: batchnorm_fold2.py プロジェクト: xyg320/mindspore
def batchnorm_fold2(x,
                    beta,
                    gamma,
                    batch_std,
                    batch_mean,
                    running_std,
                    y,
                    kernel_name="batchnorm_fold2"):
    """_BatchNormFold2 op"""
    shape = x.get("shape")
    util.check_kernel_name(kernel_name)
    util.check_shape_rule(shape)
    util.check_shape_size(shape, SHAPE_SIZE_LIMIT)
    check_list = ["float16", "float32"]
    inp_dtype = x.get("dtype").lower()
    if not inp_dtype in check_list:
        raise RuntimeError("Dtype of input only support float16, float32")
    data_format = x.get("format")
    ori_format = x.get("ori_format")
    if data_format.upper() not in ("NC1HWC0", "NCHW"):
        raise RuntimeError("Un supported data format {}".format(data_format))
    if data_format.upper() == "NCHW" and ori_format != "NCHW":
        raise RuntimeError("data_format(NCHW) must same as ori_format")
    shape_c = gamma.get("shape")
    if gamma.get("format").upper() == "NCHW":
        shape_c = 1, gamma.get("shape")[0], 1, 1
    x_t = tvm.placeholder(shape, name="x", dtype=inp_dtype)
    beta_t = tvm.placeholder(shape_c, name="beta", dtype=inp_dtype)
    gamma_t = tvm.placeholder(shape_c, name="gamma", dtype=inp_dtype)
    batch_std_t = tvm.placeholder(shape_c, name="batch_std", dtype=inp_dtype)
    batch_mean_t = tvm.placeholder(shape_c, name="batch_mean", dtype=inp_dtype)
    running_std_t = tvm.placeholder(shape_c,
                                    name="running_std",
                                    dtype=inp_dtype)

    res = batchnorm_fold2_compute(x_t, beta_t, gamma_t, batch_std_t,
                                  batch_mean_t, running_std_t, kernel_name)

    with tvm.target.cce():
        sch = generic.auto_schedule(res)

    config = {
        "print_ir":
        False,
        "name":
        kernel_name,
        "tensor_list":
        [x_t, beta_t, gamma_t, batch_std_t, batch_mean_t, running_std_t, res]
    }

    te.lang.cce.cce_build_code(sch, config)
コード例 #8
0
def segment_max_d(x, y, segment_ids, kernel_name="segment_max_d"):
    """
    Operation and Schedule for segment_max


    Parameters
    ----------
    x : dict
        shape and dtype of input
    y: dict
        shape and dtype of output
    segment_ids : list
        should be the size of the first dimension
    kernel_name: str
        kernel name, default value is "segment_max_d"

    Returns
    -------
        None
    """
    shape = x.get("shape")
    dtype = x.get("dtype")
    util.check_kernel_name(kernel_name)
    util.check_shape_rule(shape)
    util.check_shape_size(shape, SHAPE_SIZE_LIMIT)

    check_list = ["float16", "float32", "int32"]
    if dtype.lower() not in check_list:
        raise RuntimeError("segment_max only support float16, float32, int32")

    # when shape[0] > first_dim_size_threshold,
    # default stack space may not be enough, we need to prompt the user
    if shape[0] > FIRST_DIM_SIZE_THRESHOLD:
        print("Default stack space may not be enough.\
         You shall increase the stack space.")

    dtype = dtype.lower()

    _check_segment_ids(shape, segment_ids)

    input_data = tvm.placeholder(shape, name="input_data", dtype=dtype)
    with tvm.target.cce():
        res = segment_max_d_compute(input_data, y, segment_ids, kernel_name)
        sch = generic.auto_schedule(res)

    config = {"name": kernel_name, "tensor_list": [input_data, res]}
    te.lang.cce.cce_build_code(sch, config)
コード例 #9
0
def correction_mul_grad_reduce(mul_dx,
                               d_batch_std,
                               channel,
                               kernel_name="correction_mul_grad_reduce"):
    """CorrectionMulGradReduce op"""
    shape_dout = mul_dx.get("shape")
    shape_x = mul_dx.get("shape")

    dtype_dout = mul_dx.get("dtype")

    inp_dtype_dout = dtype_dout.lower()

    util.check_dtype_rule(inp_dtype_dout, ("float16", "float32"))

    util.check_kernel_name(kernel_name)
    util.check_shape_rule(shape_x)
    util.check_shape_size(shape_x, SHAPE_SIZE_LIMIT)

    data_format = mul_dx.get("format")
    ori_format = mul_dx.get("format")
    if data_format.upper() not in ("NC1HWC0", "NCHW"):
        raise RuntimeError("Un supported data format {}".format(data_format))
    if data_format.upper() == "NCHW" and ori_format != "NCHW":
        raise RuntimeError("data_format(NCHW) must same as ori_format")

    shape_c = [1] * len(shape_x)
    shape_c[channel] = d_batch_std.get("ori_shape")[0]
    if data_format == "NC1HWC0" and channel == 1:
        shape_c = d_batch_std.get("shape")

    dout_t = tvm.placeholder(shape_dout, name="dout", dtype=inp_dtype_dout)
    res = correction_mul_grad_reduce_compute(dout_t, channel, data_format,
                                             kernel_name)

    with tvm.target.cce():
        sch = generic.auto_schedule(res)

    tensor_list = [dout_t, res]
    config = {
        "print_ir": False,
        "name": kernel_name,
        "tensor_list": tensor_list
    }

    te.lang.cce.cce_build_code(sch, config)
コード例 #10
0
def strided_slice_two_turn_one(input_x, output_x, kernel_name):
    """

    Returns
    -------
    None
    """
    input_shape = input_x.get("shape")
    input_dtype = input_x.get("dtype").lower()
    check_list = ("float16", "float32")

    util.check_dtype_rule(input_dtype, check_list)
    util.check_kernel_name(kernel_name)
    util.check_shape_rule(input_shape)
    util.check_shape_size(input_shape, SHAPE_SIZE_LIMIT)

    ss_last_dim = StridedSliceLastDim(input_x, output_x, kernel_name)

    return ss_last_dim.strided_slice_compute()
コード例 #11
0
def custom_negative(shape,
                    dtype,
                    kernel_name="cce_custom_negative",
                    need_build=False,
                    need_print=False):
    """
    calculate y = -x, calculating data type is float16
    
    Parameters
    ----------
    shape : shape of data

    dtype : the data type, assume src_dtype equals dst_dtype,
            only support float16, float32, int32

    kernel_name : cce kernel name, default value is "cce_custom_negative"

    need_buid : if need to build CCEC kernel, default value is False

    need_print : if need to print the ir, default value is False

    Returns
    -------
    None
        
    """
    util.check_kernel_name(kernel_name)
    util.check_shape_rule(shape)
    util.check_shape_size(shape, SHAPE_SIZE_LIMIT)

    check_list = ["float16", "float32", "int32"]
    if not (dtype.lower() in check_list):
        raise RuntimeError("sqrt_cce only support %s while dtype is %s" %
                           (",".join(check_list), dtype))

    caffe2_negative.caffe2_negative_cce(shape,
                                        dtype,
                                        kernel_name=kernel_name,
                                        need_build=need_build,
                                        need_print=need_print)
コード例 #12
0
ファイル: mul_no_nan.py プロジェクト: gekowa/ascend-opp
def mul_no_nan_compute(input_x1, input_x2, output_y, kernel_name="mul_no_nan"):
    """
    calculating data

    Parameters
    ----------
    input_x1 : TVM tensor
        the placeholder of input_x1
    input_x2 : TVM tensor
        the placeholder of input_x2
    output_y : dict
        dict of output_y, include keys(shape and dtype)
    kernel_name : str
        kernel name, default value is "mul_no_nan"

    Returns
    -------
    output tensor
    """
    """
    np.where(np.equal(y, 0.), np.zeros((), dtype=dtype), np.multiply(x, y))
    """
    src_dtype = input_x1.dtype.lower()
    shape_x1 = te.lang.cce.util.shape_to_list(input_x1.shape)
    shape_x2 = te.lang.cce.util.shape_to_list(input_x2.shape)

    shape_x1, shape_x2, shape_max = util.produce_shapes(shape_x1, shape_x2)
    util.check_shape_size(shape_max, SHAPE_SIZE_LIMIT)
    input_x1 = te.lang.cce.broadcast(input_x1, shape_max)
    input_x2 = te.lang.cce.broadcast(input_x2, shape_max)

    mul_res = te.lang.cce.vmul(input_x1, input_x2)
    zero = tvm.const(0, dtype=src_dtype)
    zeros = te.lang.cce.broadcast(zero, shape_max)
    res = te.lang.cce.vcmpsel(input_x2,
                              zeros,
                              operation='eq',
                              slhs=zeros,
                              srhs=mul_res)
    return res
コード例 #13
0
def custom_subtract(shape_x,
                    shape_y,
                    dtype,
                    kernel_name="cce_subtract",
                    need_build=True,
                    need_print=True):
    """
    do element-wise subtract operation between two input tensors

    Parameters:
    ----------
    shape_x : shape of input data1

    shape_y : shape of input data2

    dtype : source data type, support float16,float32,int32

    kernel_name : cce kernel name, default value is "cce_subtract"

    need_buid : if need to build CCEC kernel, default value is False

    need_print : if need to print the ir, default value is False

    Returns
    -------
    None
    """
    util.check_kernel_name(kernel_name)
    util.check_shape_rule(shape_x)
    util.check_shape_rule(shape_y)
    util.check_shape_size(shape_x, SHAPE_SIZE_LIMIT)
    util.check_shape_size(shape_y, SHAPE_SIZE_LIMIT)

    check_list = ["float16", "float32", "int32"]
    dtype = dtype.lower()
    if not (dtype in check_list):
        raise RuntimeError(
            "tf_subtract_cce only support %s while dtype is %s" %
            (",".join(check_list), dtype))
    print("######## shape")
    shape_x, shape_y, shape_max = util.produce_shapes(shape_x, shape_y)
    util.check_shape_size(shape_max, SHAPE_SIZE_LIMIT)

    data1 = tvm.placeholder(shape_x, dtype=dtype, name="data1")
    data2 = tvm.placeholder(shape_y, dtype=dtype, name="data2")

    with tvm.target.cce():
        data1_tmp1 = te.lang.cce.broadcast(data1, shape_max)
        data2_tmp1 = te.lang.cce.broadcast(data2, shape_max)
        res = te.lang.cce.vsub(data1_tmp1, data2_tmp1)
        sch = generic.auto_schedule(res)

    config = {
        "print_ir": need_print,
        "need_build": need_build,
        "name": kernel_name,
        "tensor_list": [data1, data2, res]
    }
    te.lang.cce.cce_build_code(sch, config)
コード例 #14
0
def custom_equal(shape_x, shape_y, dtype, kernel_name="cce_tf_equal", need_build=False,
                 need_print=False):
    """
    do element-wise equal operation between two input tensors

    Parameters:
    ----------
    shape_x : shape of input x

    shape_y : shape of input y

    dtype : source data type, support float16,float32,int32,int8,uint8

    kernel_name : cce kernel name, default value is "cce_tf_equal"

    need_buid : if need to build CCEC kernel, default value is False

    need_print : if need to print the ir, default value is False

    Returns
    -------
    None
    """

    util.check_kernel_name(kernel_name)
    util.check_shape_rule(shape_x)
    util.check_shape_rule(shape_y)

    check_list = ["float16", "float32", "int32", "int8", "uint8", "bool"]

    dtype = dtype.lower()
    if not (dtype in check_list):
        raise RuntimeError(
            "tf_equal_cce only support %s while dtype is %s" % (",".join(check_list), dtype))

    util.check_shape_size(shape_x, SHAPE_SIZE_LIMIT)
    util.check_shape_size(shape_y, SHAPE_SIZE_LIMIT)

    shape_x, shape_y, shape_max = util.produce_shapes(shape_x, shape_y)

    util.check_shape_size(shape_max, SHAPE_SIZE_LIMIT)

    x = tvm.placeholder(shape_x, dtype=dtype, name="x")
    y = tvm.placeholder(shape_y, dtype=dtype, name="y")

    x_tmp = te.lang.cce.broadcast(x, shape_max)
    y_tmp = te.lang.cce.broadcast(y, shape_max)

    res = tvm.compute(shape_max, lambda *i: x_tmp(*i) == y_tmp(*i), name='res')

    sch = tvm.create_schedule(res.op)

    if need_print:
        with build_config:
            print(tvm.lower(sch, [x, y, res], simple_mode=True))

    if need_build:
        with build_config:
            tvm.build(sch, [x, y, res], "cce", name=kernel_name)
コード例 #15
0
def batchnorm_fold2_grad_reduce(dout,
                                x,
                                dout_reduce,
                                dout_x_reduce,
                                kernel_name="batchnorm_fold2_grad_reduce"):
    """_BatchNormFold2GradReduce op"""
    shape = x.get("shape")
    x_format = x.get("format")
    util.check_kernel_name(kernel_name)
    util.check_shape_rule(shape)
    util.check_shape_size(shape, SHAPE_SIZE_LIMIT)
    check_list = ["float16", "float32"]
    inp_dtype = x.get("dtype").lower()
    if not inp_dtype in check_list:
        raise RuntimeError("Dtype of input only support float16, float32")
    dout_t = tvm.placeholder(shape, name="dout", dtype=inp_dtype)
    x_t = tvm.placeholder(shape, name="x", dtype=inp_dtype)

    res_list = batchnorm_fold2_grad_reduce_compute(dout_t, x_t, dout,
                                                   kernel_name)

    if x_format == "NC1HWC0":
        with tvm.target.cce():
            sch = generic.auto_schedule(res_list)
        tensor_list = [dout_t, x_t] + list(res_list)
        config = {
            "print_ir": False,
            "name": kernel_name,
            "tensor_list": tensor_list
        }

        te.lang.cce.cce_build_code(sch, config)
        return
    from impl.bn_training_reduce import bn_training_reduce_schedule_nd
    sch, tensor_list = bn_training_reduce_schedule_nd(res_list)
    with build_config:
        tvm.build(sch, tensor_list, "cce", name=kernel_name)
コード例 #16
0
    def check_param_common(self):
        """
        Check parameter

        Parameters
        ----------
        None

        Returns
        -------
        None
        """
        util.check_kernel_name(self.kernel_name)
        util.check_shape_rule(self.indices_shape)
        util.check_shape_rule(self.grad_shape)

        util.check_shape_size(self.indices_shape, SHAPE_SIZE_LIMIT)
        util.check_shape_size(self.grad_shape, SHAPE_SIZE_LIMIT)

        check_list_indices_dtype = ("int32", "int64")

        util.check_dtype_rule(self.indices_dtype, check_list_indices_dtype)
        util.check_dtype_rule(self.grad_dtype, ("float32"))

        if self.grad_shape[1:] != self.var_shape[1:]:
            raise RuntimeError(
                "grad's shape must be the same as var's shape"
                " except first dimension")

        if len(self.indices_shape) != 1:
            raise RuntimeError(
                "indices must be one-dimensioal")

        if self.grad_shape[0] != self.indices_shape[0]:
            raise RuntimeError("grad must be the same shape as indices in "
                               "first dimension")
コード例 #17
0
def addcdiv(x1, x2, x3, y=None, alpha=1.0, kernel_name="addcdiv"):

    check_list = ("float16", "float32")

    shape_x1 = x1.get("shape")
    dtype_x1 = x1.get("dtype").lower()

    shape_x2 = x2.get("shape")
    dtype_x2 = x2.get("dtype").lower()

    shape_x3 = x3.get("shape")
    dtype_x3 = x3.get("dtype").lower()

    util.check_shape_rule(shape_x1)    # 校验算子的shape,维度数需要大于等于1、小于等于8
    util.check_shape_size(shape_x1, SHAPE_SIZE_LIMIT)    # 校验算子第一个输入shape大小
    util.check_dtype_rule(dtype_x1, check_list)    # 校验算子的输入数据类型

    util.check_shape_rule(shape_x2)
    util.check_shape_size(shape_x2, SHAPE_SIZE_LIMIT)
    util.check_dtype_rule(dtype_x2, check_list)

    util.check_shape_rule(shape_x3)
    util.check_shape_size(shape_x3, SHAPE_SIZE_LIMIT)
    util.check_dtype_rule(dtype_x3, check_list)

    if dtype_x1 != dtype_x2 or dtype_x1 != dtype_x3:
        raise RuntimeError("the type of x1, x2, x3 must be the same!")

    util.check_kernel_name(kernel_name)    # 校验算子的kernel_name

    # 取shape_x1,shape_x2,shape_x3中每个维度的大值赋给shape_max
    shape_x2, shape_x3, shape_max = broadcast_shapes(shape_x2, shape_x3)
    util.check_tensor_shape_size(shape_max)     # 对shape_max进行校验
    shape_x1, _, shape_max = broadcast_shapes(shape_x1, shape_max)
    util.check_tensor_shape_size(shape_max)     # 对shape_max进行校验
    shape_x2, _, _ = broadcast_shapes(shape_x2, shape_max)    # 将input_x的shape广播为shape_max
    shape_x3, _, _ = broadcast_shapes(shape_x3, shape_max)    # 将input_y的shape广播为shape_max

    data_x1 = tvm.placeholder(shape_x1, name="data_x1", dtype=dtype_x1)
    data_x2 = tvm.placeholder(shape_x2, name="data_x2", dtype=dtype_x2)
    data_x3 = tvm.placeholder(shape_x3, name="data_x3", dtype=dtype_x3)

    res = addcdiv_compute(data_x1, data_x2, data_x3, shape_max, alpha, kernel_name)

    with tvm.target.cce():
        schedule = generic.auto_schedule(res)

    config = {"name": kernel_name,
              "tensor_list": [data_x1, data_x2, data_x3, res]}

    te.lang.cce.cce_build_code(schedule, config)
コード例 #18
0
def fused_minimum_or_maximum_grad_cce(
        shape_dz,
        shape_x,
        shape_y,
        grad_x=True,
        grad_y=True,
        cmp_type="LE",
        dtype="float32",
        kernel_name="cce_fused_minimum_or_maximum_grad",
        need_build=False,
        need_print=False):
    """
    algorithm:
    calculating minimum or maximum_grad of the two input data

    Parameters
    ----------
    shape_dz: list or tuple.
        shape of data_inputdz
    shape_x: list or tuple.
        shape of data_inputx
    shape_y: list or tuple.
        shape of data_inputy
    grad_x: bool
        if grad_x is true,output need return dx
    grad_y: bool
        if grad_y is true,output need return dy
    cmp_type: str
        LessEqual or GreatEqual
    dtype: str
        the data type, assume src_dtype equals dst_dtype,
        only support float16, float32, int32
    kernel_name: str
        cce kernel name, default value is "cce_fused_minimum_or_maximum_grad"
    need_build: bool
        if need to build CCEC kernel, default value is False
    need_print: bool
        if need to print the ir, default value is False

    Returns:
    -------
    none.
    """
    util.check_kernel_name(kernel_name)
    util.check_shape_rule(shape_x)
    util.check_shape_rule(shape_y)
    shape_x, shape_y, shape_max = util.produce_shapes(shape_x, shape_y)
    util.check_shape_rule(shape_max)
    util.check_shape_size(shape_max, SHAPE_SIZE_LIMIT)
    if list(shape_dz) != list(shape_max):
        raise RuntimeError(
            "fused_minimum_or_maximum_grad_cce shape_dz != shape_max")

    dtype = dtype.lower()
    if dtype not in ["float16", "float32", "int32"]:
        raise RuntimeError("fused_minimum_or_maximum_grad_cce only support"
                           " float16, float32, int32")

    if (grad_x, grad_y) == (False, False):
        raise RuntimeError("grad_x and grad_x at least one is true")

    placeholders = []
    placeholders.append(tvm.placeholder(shape_dz, name="input_dz",
                                        dtype=dtype))
    placeholders.append(tvm.placeholder(shape_x, name="input_x", dtype=dtype))
    placeholders.append(tvm.placeholder(shape_y, name="input_y", dtype=dtype))

    outs = fused_minimum_or_maximum_grad_compute(placeholders, shape_x,
                                                 shape_y, shape_dz, cmp_type,
                                                 dtype)

    with tvm.target.cce():
        if (grad_x, grad_y) == (True, False):
            sch = generic.auto_schedule(outs[0])
            outs = [outs[0]]
        if (grad_x, grad_y) == (False, True):
            sch = generic.auto_schedule(outs[1])
            outs = [outs[1]]
        if (grad_x, grad_y) == (True, True):
            sch = generic.auto_schedule(outs)

    config = {
        "print_ir": need_print,
        "need_build": need_build,
        "name": kernel_name,
        "tensor_list": placeholders + outs
    }

    te.lang.cce.cce_build_code(sch, config)
コード例 #19
0
def custom_round(shape,
                 dtype,
                 kernel_name="cce_round",
                 need_build=False,
                 need_print=False):
    """
    doing round operations, calculating data type is float16 or float32 or int32
    
    Parameters
    ----------
    shape : shape of data

    dtype : the data type, assume src_dtype equals dst_dtype

    kernel_name : cce kernel name, default value is "cce_round"

    need_buid : if need to build CCEC kernel, default value is False

    need_print : if need to print the ir, default value is False

    Returns
    -------
    None
        
    """
    check_list = ["float16", "float32", "int32"]
    device_api_map = {
        "float16": "cc_device_round_float16",
        "float32": "cc_device_round_float",
        "int32": "cc_device_round_int32"
    }

    max_dim = 8
    shape_len = len(shape)
    if shape_len > max_dim:
        raise RuntimeError(
            "round_cce only support up to %d dimensions while the shape's dimension is %d"
            % (max_dim, shape_len))

    util.check_kernel_name(kernel_name)
    util.check_shape_rule(shape)
    util.check_shape_size(shape, SHAPE_SIZE_LIMIT)

    if not (dtype.lower() in check_list):
        raise RuntimeError("round_cce only support %s while dtype is %s" %
                           (",".join(check_list), dtype))

    inp_dtype = dtype.lower()
    shape = util.shape_refine(shape)
    data_input = tvm.placeholder(shape, name="data_input", dtype=inp_dtype)
    device_api = device_api_map[inp_dtype]

    block_num = "block_num"
    block_idx = "block_idx"
    v_ndim = tvm.const(len(shape), "int32")
    padC0 = tvm.const(0, "int32")
    p_shape = util.create_param_ptr(shape, "int32", "p_shape")

    output = tvm.extern(
        shape,
        [data_input, p_shape],
        lambda ins, outs: tvm.call_extern(
            "int32_t",
            device_api,
            block_num,
            block_idx,
            v_ndim,
            ins[1].access_ptr("r"),  # shape
            padC0,
            ins[0].access_ptr("r"),  # input x
            outs[0].access_ptr("w")),
        name="output",
        dtype=inp_dtype)

    s = tvm.create_schedule(output.op)

    if need_print:
        with build_config:
            print(tvm.lower(s, [data_input, output], simple_mode=True))
    if need_build:
        with build_config:
            tvm.build(s, [data_input, output], "cce", name=kernel_name)
コード例 #20
0
ファイル: custom_pow.py プロジェクト: huaweiatlas-test/AtkOps
def custom_pow(shape,
               shape_y,
               dtype,
               kernel_name="cce_tf_pow",
               need_build=False,
               need_print=False):
    """
    calculate x^y, calculating data type is float16 or float32 or int32
    when x < 0 , the output is a meaningless value.
    Parameters
    ----------
    shape : shape of data

    dtype : the data type, assume src_dtype equals dst_dtype, only support
    float16, float32, int32

    kernel_name : cce kernel name, default value is "tf_pow_cce"

    need_buid : if need to build CCEC kernel, default value is False

    need_print : if need to print the ir, default value is False

    Returns
    -------
    None

    """
    supported_dtypes = ["float16", "float32", "int32"]
    device_api = "cc_device_pow"

    util.check_kernel_name(kernel_name)
    util.check_shape_rule(shape)
    util.check_shape_size(shape, SHAPE_SIZE_LIMIT)

    if not dtype.lower() in supported_dtypes:
        raise RuntimeError("tf_pow_cce only support %s while dtype is %s" %
                           (",".join(supported_dtypes), dtype))

    inp_dtype = dtype.lower()
    shape = util.shape_refine(shape)
    data_lhs = tvm.placeholder(shape, name="data_lhs", dtype=inp_dtype)
    data_rhs = tvm.placeholder(shape, name="data_rhs", dtype=inp_dtype)

    v_datatype = util.get_device_api_dtype(inp_dtype)
    v_ndim = len(shape)
    block_num = "block_num"
    block_idx = "block_idx"
    pad_c0 = 0
    p_scale = util.create_param_ptr([0], inp_dtype, "p_scale")
    p_shift = util.create_param_ptr([0], inp_dtype, "p_shift")
    p_power = util.create_param_ptr([0], inp_dtype, "p_power")
    p_shape = util.create_param_ptr(shape, "int32", "p_shape")

    output = tvm.extern(
        shape,
        [data_lhs, data_rhs, p_scale, p_shift, p_power, p_shape],
        lambda ins, outs: tvm.call_extern(
            "int32_t",
            device_api,
            block_num,
            block_idx,
            v_datatype,
            ins[2].access_ptr("r"),  # scale
            ins[3].access_ptr("r"),  # shift
            ins[4].access_ptr("r"),  # power
            v_ndim,
            ins[5].access_ptr("r"),  # shape
            pad_c0,
            ins[0].access_ptr("r"),  # input x
            v_ndim,
            v_ndim,
            ins[5].access_ptr("r"),  # shape
            pad_c0,
            ins[1].access_ptr("r"),  # input y
            outs[0].access_ptr("w")),
        name="output",
        dtype=inp_dtype)

    schedule = tvm.create_schedule(output.op)

    if need_print:
        with build_config:
            print(
                tvm.lower(schedule, [data_lhs, data_rhs, output],
                          simple_mode=True))
    if need_build:
        with build_config:
            tvm.build(schedule, [data_lhs, data_rhs, output],
                      "cce",
                      name=kernel_name)
コード例 #21
0
def CusMatMulCubeDenseLeft(input_x1,
                           input_x2,
                           bias=None,
                           output_y={},
                           trans_a=False,
                           trans_b=False,
                           kernel_name="matmulcube"):
    """
    calculating  matrix multiplication with bias, C = A*B + bias, support input
    data with fractal format.

    Parameters:
    shape_a: list or tuple
            Shape of the first tensor a with rank > 1
    shape_b:  list or tuple
            Shape of the second tensor b with the same type with a,
            and shape_a, shape_b must be 2 dims
    src_dtype: str
            The data type of input, support "float32", "float16"
    dst_dtype: str
            The data type of output, support "float32", "float16"
    trans_a: bool
            If True, shape_a == transposed before multiplication
    trans_b: bool
            If True, shape_b == transposed before multiplication
    is_fractal: bool
            If True, the input data format of a and b must be fractal format
    shape_bias: list or tuple
            Shape of bias, only support the input data format with ND

    Returns
    -------
    None
    """
    print("!!!!come into zzt~~~~~~~!!!!")
    shape_a = input_x1.get("ori_shape")
    shape_b = input_x2.get("ori_shape")
    shape_output = output_y.get("ori_shape")
    print("============")
    print(input_x1.get("format"), input_x2.get("format"))
    print(shape_a, shape_b)
    print("============")
    if input_x2.get("format") == "FRACTAL_Z":
        n, c, h, w = shape_b
        c0 = 16
        c1 = c // c0
        if c1 == 0:
            c1 = 1
        shape_b = [n, c1 * h * w * c0]
        shape_a = [n, n]

    if input_x1.get("format") == "FRACTAL_Z":
        n, c, h, w = shape_a
        c0 = 16
        c1 = c // c0
        if c1 == 0:
            c1 = 1
        shape_a = [n, c1 * h * w * c0]
        shape_b = [c1 * h * w * c0, c1 * h * w * c0]

    if input_x2.get("format") == "FRACTAL_NZ":
        shape_a = [shape_b[0], shape_b[0]]
        shape_b = shape_b

    if input_x1.get("format") == "FRACTAL_NZ":
        shape_a = shape_a
        shape_b = [shape_a[1], shape_a[1]]

    shape_a = list(shape_a)
    shape_b = list(shape_b)

    shape_a = _get_input_shape(shape_a)
    shape_b = _get_input_shape(shape_b)

    util.check_kernel_name(kernel_name)
    util.check_shape_rule(shape_a)
    util.check_shape_rule(shape_b)
    util.check_shape_size(shape_a, SHAPE_SIZE_LIMIT)
    util.check_shape_size(shape_b, SHAPE_SIZE_LIMIT)

    shape_a = [shape_a[1], shape_a[0]]
    trans_a = bool(1 - trans_a)

    shape_b = [shape_b[1], shape_b[0]]
    trans_b = bool(1 - trans_b)

    shape_bias = ()
    if bias is not None and bool(bias):
        shape_bias = bias.get("shape")
        shape_bias = list(shape_bias)
        shape_bias = _get_bias(shape_bias)

    src_dtype = input_x1.get("dtype").lower()
    dst_dtype = output_y.get("dtype").lower()
    _shape_check(shape_a, shape_b, shape_bias, src_dtype, trans_a, trans_b)

    m_shape = shape_a[len(shape_a) - 2]
    km_shape = shape_a[len(shape_a) - 1]
    kn_shape = shape_b[len(shape_a) - 2]
    n_shape = shape_b[len(shape_a) - 1]

    if src_dtype == "float16":
        block_reduce = cce.BLOCK_REDUCE

    block_in = cce.BLOCK_IN
    block_out = cce.BLOCK_OUT

    if trans_a and km_shape == 1:
        block_in = cce.BLOCK_VECTOR

    if not trans_a and m_shape == 1:
        block_in = cce.BLOCK_VECTOR

    if trans_b and kn_shape == 1:
        block_out = cce.BLOCK_VECTOR

    if not trans_b and n_shape == 1:
        block_out = cce.BLOCK_VECTOR

    if trans_a:
        shape_a_temp = (m_shape // block_reduce, km_shape // block_in,
                        block_reduce, block_in)
    else:
        shape_a_temp = (m_shape // block_in, km_shape // block_reduce,
                        block_in, block_reduce)

    if trans_b:
        shape_b_temp = (kn_shape // block_out, n_shape // block_reduce,
                        block_reduce, block_out)
    else:
        shape_b_temp = (kn_shape // block_reduce, n_shape // block_out,
                        block_out, block_reduce)
    shape_a_temp = (shape_a_temp[0], shape_a_temp[1], shape_a_temp[2],
                    shape_a_temp[3])
    format_a = "FRACTAL_NZ"
    shape_b_temp = (shape_b_temp[0], shape_b_temp[1], shape_b_temp[2],
                    shape_b_temp[3])
    format_b = "FRACTAL_NZ"

    print("=======================================")
    print(shape_a_temp, shape_b_temp)
    print(format_a, format_b)
    print("=======================================")
    tensor_bias = None
    tensor_a = tvm.placeholder(shape_a_temp, name='tensor_a', dtype=src_dtype)
    tensor_b = tvm.placeholder(shape_b_temp, name='tensor_b', dtype=src_dtype)

    if shape_bias:
        tensor_bias = tvm.placeholder(shape_bias,
                                      name='tensor_bias',
                                      dtype=dst_dtype)

    if shape_a_temp[0] == 63 and shape_a_temp[1] == 63 and shape_b_temp[
            0] == 128 and shape_b_temp[1] == 63:
        if util.get_product_version() == util.VERSION_MINI:
            tik_instance = tik.Tik(tik.Dprofile("v100", "mini"))
        else:
            tik_instance = tik.Tik(tik.Dprofile("v100", "cloud"))

        input_x1 = tik_instance.Tensor("float16",
                                       shape_a_temp,
                                       name="left_matrix",
                                       scope=tik.scope_gm)
        input_x2 = tik_instance.Tensor("float16",
                                       shape_b_temp,
                                       name="right_matrix",
                                       scope=tik.scope_gm)
        resMatmul = tik_instance.Tensor("float16",
                                        shape_output,
                                        name="output",
                                        scope=tik.scope_gm)
        with tik_instance.for_range(0, 32, block_num=32) as block_index:
            resMatmul_local_UB = tik_instance.Tensor("float16", (128 * 256, ),
                                                     scope=tik.scope_ubuf,
                                                     name="resMatmul_local_UB")
            resMatmul_local_UB_local_L0C = tik_instance.Tensor(
                "float32", (128 * 256, ),
                scope=tik.scope_cc,
                name="resMatmul_local_UB")
            input_1_local_L1_local_L0A = tik_instance.Tensor(
                "float16", (128 * 128, ),
                scope=tik.scope_ca,
                name="input_1_local_L1_local_L0A")
            input_2_local_L1 = tik_instance.Tensor("float16", (128 * 256, ),
                                                   scope=tik.scope_cbuf,
                                                   name="input_2_local_L1")
            input_1_local_L1 = tik_instance.Tensor("float16", (128 * 128, ),
                                                   scope=tik.scope_cbuf,
                                                   name="input_1_local_L1")
            input_2_local_L1_local_L0B = tik_instance.Tensor(
                "float16", (128 * 256, ),
                scope=tik.scope_cb,
                name="input_2_local_L1_local_L0B")
            core_m_idx = block_index % 8
            core_n_idx = block_index // 8
            with tik_instance.if_scope(core_m_idx != 7):
                tik_instance.data_move(
                    input_1_local_L1,
                    input_x1[core_m_idx * (8 * 256 + 128 * 1008)], 0, 8, 128,
                    55 * 16, 0)
                tik_instance.data_move(
                    input_2_local_L1,
                    input_x2[core_m_idx * 8 * 256 + core_n_idx * 512 * 1008],
                    0, 32, 128, 55 * 16, 0)
                with tik_instance.for_range(0, 8) as cc12:
                    tik_instance.load2dv1(
                        input_1_local_L1_local_L0A[cc12 * 2048],
                        input_1_local_L1[cc12 * 256], 0, 8, 8, 0, False)
                with tik_instance.for_range(0, 2) as cc6:
                    with tik_instance.for_range(0, 8) as cc121:
                        tik_instance.load2dv1(
                            input_2_local_L1_local_L0B[cc121 * 4096],
                            input_2_local_L1[cc6 * 32768 + cc121 * 256], 0, 16,
                            8, 0, True)
                    tik_instance.mmad(resMatmul_local_UB_local_L0C,
                                      input_1_local_L1_local_L0A,
                                      input_2_local_L1_local_L0B, 128, 128,
                                      256, 0)
                    tik_instance.data_move(resMatmul_local_UB,
                                           resMatmul_local_UB_local_L0C, 0, 1,
                                           128, 0, 0, 1)
                    tik_instance.data_move(
                        resMatmul[cc6 * 256 * 1008 + core_m_idx * 8 * 256 +
                                  core_n_idx * 512 * 1008], resMatmul_local_UB,
                        0, 16, 256 // 2, 0, 55 * 16 * 2 // 2)
            with tik_instance.else_scope():
                tik_instance.data_move(
                    input_1_local_L1,
                    input_x1[core_m_idx * (8 * 256 + 128 * 1008)], 0, 7, 112,
                    56 * 16, 0)
                tik_instance.data_move(
                    input_2_local_L1,
                    input_x2[core_m_idx * 8 * 256 + core_n_idx * 512 * 1008],
                    0, 32, 112, 56 * 16, 0)
                with tik_instance.for_range(0, 7) as cc10:
                    tik_instance.load2dv1(
                        input_1_local_L1_local_L0A[cc10 * 1792],
                        input_1_local_L1[cc10 * 256], 0, 7, 7, 0, False)
                with tik_instance.for_range(0, 2) as cc5:
                    with tik_instance.for_range(0, 7) as cc101:
                        tik_instance.load2dv1(
                            input_2_local_L1_local_L0B[cc101 * 4096],
                            input_2_local_L1[cc5 * 28672 + cc101 * 256], 0, 16,
                            7, 0, True)
                    tik_instance.mmad(resMatmul_local_UB_local_L0C,
                                      input_1_local_L1_local_L0A,
                                      input_2_local_L1_local_L0B, 112, 112,
                                      256, 0)
                    tik_instance.data_move(resMatmul_local_UB,
                                           resMatmul_local_UB_local_L0C, 0, 1,
                                           112, 0, 0, 1)
                    tik_instance.data_move(
                        resMatmul[cc5 * 256 * 1008 + core_m_idx * 8 * 256 +
                                  core_n_idx * 512 * 1008], resMatmul_local_UB,
                        0, 16, 224 // 2, 0, 56 * 16 * 2 // 2)
        tik_instance.BuildCCE(kernel_name=kernel_name,
                              inputs=[input_x1, input_x2],
                              outputs=[resMatmul])
        return tik_instance

    print("come into tbe, shape is error!")
    result = te.lang.cce.matmul(tensor_a,
                                tensor_b,
                                trans_a,
                                trans_b,
                                format_a=format_a,
                                format_b=format_b,
                                dst_dtype=dst_dtype,
                                tensor_bias=tensor_bias)

    with tvm.target.cce():
        schedule = generic.auto_schedule(result)

    tensor_list = [tensor_a, tensor_b, result]
    if shape_bias:
        tensor_list = [tensor_a, tensor_b, tensor_bias, result]

    config = {
        "print_ir": False,
        "name": kernel_name,
        "tensor_list": tensor_list
    }

    te.lang.cce.cce_build_code(schedule, config)
コード例 #22
0
def custom_Upsample(shape,
                    dtype,
                    scale,
                    data_format="channels_last",
                    kernel_name="cce_darknet_upsample",
                    need_build=False,
                    need_print=False):
    """
    Parameters
    ----------
    shape: input tensor's shape

    dtype: input tensor's dtype, support:`float16,float32

    scale: the upsampling factors

    data_format: "channels_last" or "channels_first"

    kernel_name : kernel name, default value is "MyUpsample"

    need_buid : if need to build CCEC kernel, default value is False

    need_print : if need to print the ir, default value is False

    Returns
    -------
    None
    """
    """
    TODO:
    Please refer to the TE DSL Manual, And code here with TE DSL.
    """
    inp_dtype = dtype.lower()
    check_list = ["float16", "float32", "int32", "int8", "uint8"]
    if inp_dtype not in check_list:
        raise RuntimeError("upsample only support %s while dtype is %s" %
                           (",".join(check_list), dtype))

    util.check_kernel_name(kernel_name)
    util.check_shape_rule(shape)
    util.check_shape_size(shape, SHAPE_SIZE_LIMIT)
    size = (scale, scale)

    shape_size = len(shape)
    if not (shape_size == 4 or shape_size == 5):
        raise RuntimeError(
            "upsample only support 4D or 5D while len(shape):%d" % len(shape))

    input_tensor = tvm.placeholder(shape, name="input_tensor", dtype=inp_dtype)

    res = None
    if shape_size == 5:
        # shape_size == 5 D-sepecial (N, C1, H, W, C0)
        output_shape = (shape[0], shape[1], shape[2] * size[0],
                        shape[3] * size[1], shape[4])
        res = tvm.compute(
            output_shape, lambda n, c0, h, w, c: input_tensor[n, c0, h // size[
                0], w // size[1], c])
    else:
        if data_format == "channels_last":
            output_shape = (shape[0], shape[1] * size[0], shape[2] * size[1],
                            shape[3])
            res = tvm.compute(
                output_shape, lambda n, h, w, c: input_tensor[n, h // size[0],
                                                              w // size[1], c])
        elif data_format == "channels_first":
            output_shape = (shape[0], shape[1], shape[2] * size[0],
                            shape[3] * size[1])
            res = tvm.compute(
                output_shape, lambda n, c, h, w: input_tensor[n, c, h // size[
                    0], w // size[1]])
        else:
            raise RuntimeError(
                "upsample only support channels_last|channels_first "
                "while input type %s" % data_format)

    schedule = tvm.create_schedule(res.op)
    if need_print:
        with build_config:
            print(tvm.lower(schedule, [input_tensor, res], simple_mode=True))

    if need_build:
        with build_config:
            tvm.build(schedule, [input_tensor, res], "cce", name=kernel_name)
コード例 #23
0
def custom_expm1(shape,
                 dtype,
                 kernel_name="cce_tf_expm1",
                 need_build=False,
                 need_print=False):
    """
    algorithm: expm1

    calculating data's expm1, y= (e ** x) - 1,dtype is float16 or float32.

    Parameters
    ----------
    shape : shape of data.

    dtype : the data type, assume src_dtype equals dst_dtype, only support float16, float32.

    kernel_name : cce kernel name, default value is "cce_tf_expm1".

    need_buid : if need to build CCEC kernel, default value is False.

    need_print : if need to print the ir, default value is False.

    Returns
    -------
    None

    """

    # [aicpu] int32_t cc_device_exp(uint32_t blockNum, uint32_t blockIdx, int32_t dataType, const void *scale, const void *shift,
    # const void *base, int32_t dimCnt, int32_t *shape, uint32_t padC0, const void *x, void *y);

    supported_dtypes = ["float16", "float32"]

    util.check_kernel_name(kernel_name)
    util.check_shape_rule(shape)
    util.check_shape_size(shape, SHAPE_SIZE_LIMIT)

    if not (dtype.lower() in supported_dtypes):
        raise RuntimeError("tf_expm1_cce only support %s while dtype is %s" %
                           (",".join(supported_dtypes), dtype))

    inp_dtype = dtype.lower()
    shape = util.shape_refine(shape)
    data_input = tvm.placeholder(shape, name="data_input", dtype=inp_dtype)

    # step 1. calculate y = exp ** x by aicpu api
    device_api = "DeviceExp"
    v_datatype = util.get_device_api_dtype(inp_dtype)
    v_ndim = len(shape)
    block_num = "block_num"
    block_idx = "block_idx"
    padC0 = 0
    p_scale = util.create_param_ptr([1], inp_dtype, "p_scale")
    p_shift = util.create_param_ptr([0], inp_dtype, "p_shift")
    p_base = util.create_param_ptr([-1], inp_dtype, "p_base")
    p_shape = util.create_param_ptr(shape, "int32", "p_shape")

    output_exp = tvm.extern(
        shape,
        [data_input, p_scale, p_shift, p_base, p_shape],
        lambda ins, outs: tvm.call_extern(
            "int32_t",
            device_api,
            block_num,
            block_idx,
            v_datatype,
            ins[1].access_ptr("r"),  # scale
            ins[2].access_ptr("r"),  # shift
            ins[3].access_ptr("r"),  # base
            v_ndim,
            ins[4].access_ptr("r"),  # shape
            padC0,
            ins[0].access_ptr("r"),  # input x
            outs[0].access_ptr("w")),
        name="output_exp",
        dtype=inp_dtype)

    offset = tvm.const((-1), dtype=inp_dtype)

    # step 2. cauculate y = exp ** x - 1 by tvm
    output = tvm.compute(
        shape,
        lambda *indice: output_exp(*indice) + offset.astype(inp_dtype),
        name="output")

    # step 3. schedule the computation by tvm
    s = tvm.create_schedule(output.op)

    # step 4. build by tvm
    if need_print:
        with build_config:
            print(tvm.lower(s, [data_input, output], simple_mode=True))
    if need_build:
        with build_config:
            tvm.build(s, [data_input, output], "cce", name=kernel_name)
コード例 #24
0
def decode_bbox(box_predictions,
                anchors,
                decoded_boxes,
                decode_clip,
                kernel_name="decode_bbox"):
    """
    calculating data

    Parameters
    ----------
    box_predictions : shape and dtype of input
    anchors : shape and dtype of input
    decoded_boxes : shape and dtype of output, s
                    hould be same shape and type as input
    decode_clip : decode_clip
    kernel_name : kernel name, default value is "decode_bbox"
    Returns
    -------
    None
    """

    # check param & data
    shape_box_predictions = box_predictions.get("shape")
    shape_anchors = anchors.get("shape")
    shape_decoded_boxes = decoded_boxes.get("shape")
    util.check_kernel_name(kernel_name)
    format_box_predictions = box_predictions.get("format")
    format_anchors = anchors.get("format")
    format_decoded_boxes = decoded_boxes.get("format")
    check_format_shape(format_box_predictions, format_anchors,
                       format_decoded_boxes)
    util.check_shape_rule(shape_box_predictions, CONFIG_THREE, CONFIG_FOUR,
                          None)
    util.check_shape_rule(shape_anchors, CONFIG_THREE, CONFIG_FOUR, None)
    util.check_shape_rule(shape_decoded_boxes, CONFIG_TWO, CONFIG_TWO, None)
    util.check_shape_size(shape_box_predictions, SHAPE_SIZE_LIMIT)
    util.check_shape_size(shape_anchors, SHAPE_SIZE_LIMIT)
    util.check_shape_size(shape_decoded_boxes, SHAPE_SIZE_LIMIT)
    util.check_dtype_rule(box_predictions.get("dtype").lower(), ("float16", ))
    util.check_dtype_rule(anchors.get("dtype").lower(), ("float16", ))
    util.check_dtype_rule(decoded_boxes.get("dtype").lower(), ("float16", ))
    if shape_box_predictions != shape_anchors:
        raise RuntimeError("the input shape_box_predictions and anchors)"
                           "must be same")
    if (reduce(lambda x, y: x * y, shape_box_predictions[:])) \
            != (reduce(lambda x, y: x * y, shape_decoded_boxes[:])):
        raise RuntimeError("the input shape (box_predictions and anchors"
                           "is not equal to out shape(decoded_boxes)")
    if (shape_box_predictions[-1] == CONFIG_FOUR
            and len(shape_box_predictions) == CONFIG_THREE):
        if shape_decoded_boxes[1] != CONFIG_FOUR:
            raise RuntimeError("the output shape_decoded_boxes must be 4")
    else:
        if (shape_box_predictions[0] == CONFIG_FOUR
                and len(shape_box_predictions) == CONFIG_FOUR):
            if shape_decoded_boxes[0] != CONFIG_FOUR:
                raise RuntimeError("the output shape_decoded_boxes must be 4")
        else:
            raise RuntimeError("the input shape not in {(4,C,H,W), (H,W,4)}")
    if not isinstance(decode_clip, (float, int)):
        raise RuntimeError("input param type of decode_clip should be Float")
    if decode_clip < 0 or decode_clip > 10:
        raise RuntimeError(
            "input param decode_clip can't be negtive and shoud be [0,10]! ")
    # init the tiling shape
    print("shape_box_predictions", shape_box_predictions)
    shape = TilingFunc(shape_box_predictions)
    # calculate the deocede_bbox
    tik_instance = tik.Tik(tik.Dprofile())
    data_tensor = InitTensor(tik_instance, shape)
    if shape.input_shape[-1] == CONFIG_FOUR \
            and len(shape.input_shape) == CONFIG_THREE:
        decode_bbox_compute(tik_instance, shape, data_tensor, decode_clip,
                            kernel_name)
    if shape.input_shape[0] == CONFIG_FOUR \
            and len(shape.input_shape) == CONFIG_FOUR:
        decode_bbox_compute_transpose(tik_instance, shape, data_tensor,
                                      decode_clip, kernel_name)
    return tik_instance
コード例 #25
0
def check_supported(input_x1, input_x2, bias=None, output_y={}, trans_a=False, trans_b=False, kernel_name="matmulcube"):
    """check_supported"""
    shape_a = input_x1.get("shape")
    shape_b = input_x2.get("shape")
    print("shape_a: ", shape_a)
    print("shape_b: ", shape_b)
    src_dtype = input_x1.get("dtype")
    util.check_kernel_name(kernel_name)
    util.check_shape_rule(shape_a)
    util.check_shape_rule(shape_b)
    util.check_shape_size(shape_a, SHAPE_SIZE_LIMIT)
    util.check_shape_size(shape_b, SHAPE_SIZE_LIMIT)
    try:
        trans_a_f = bool(1 - trans_a)
        if src_dtype in ("float32", "int32"):
            if len(shape_a) != 2 and len(shape_b) != 2:
                return False
            if trans_b:
                if shape_b[0] == 1:
                    return False
            else:
                if shape_b[1] == 1:
                    return False
            if trans_a:
                if trans_b:
                    if shape_a[0] != shape_b[1]:
                        return False
                elif shape_a[0] != shape_b[0]:
                    return False
            elif trans_b:
                if shape_a[1] != shape_b[1]:
                    return False
            elif shape_a[1] != shape_b[0]:
                return False

            if trans_a_f and trans_b and shape_b[1] == 1:
                return False

        if src_dtype == "float16":
            if len(shape_a) != 2 and len(shape_b) != 2:
                return False

            if trans_a:
                m_shape = shape_a[1]
                k_shape = shape_a[0]
            else:
                m_shape = shape_a[0]
                k_shape = shape_a[1]

            if trans_b:
                n_shape = shape_b[0]
                k_b_shape = shape_b[1]
            else:
                n_shape = shape_b[1]
                k_b_shape = shape_b[0]

            if k_shape != k_b_shape:
                return False

            if m_shape == 1 or n_shape == 1:
                if k_shape % 256 != 0:
                    return False

    except RuntimeError as e:
        print(e)
        return False

    return True
コード例 #26
0
def custom_truncatemod(shape1, shape2, dtype, kernel_name="cce_tf_truncatemod",
                       need_build=False, need_print=False):
    """
    do element-wise truncatemod operation between two input tensors

    Parameters:
    ----------
    shape1 : shape of input data1

    shape2 : shape of input data2

    dtype : source data type, support float16,float32,int32

    kernel_name : cce kernel name, default value is "cce_tf_truncatemod"

    need_buid : if need to build CCEC kernel, default value is False

    need_print : if need to print the ir, default value is False

    Returns
    -------
    None
    """
    max_dim = 8
    shape1_len = len(shape1)
    shape2_len = len(shape2)
    if shape1_len > max_dim or shape2_len > max_dim:
        raise RuntimeError(
            "mod_cce only support up to %d dimensions while the shape's \
            dimensions is %d, %d" % (max_dim, shape1_len, shape2_len))
    util.check_kernel_name(kernel_name)
    util.check_shape_rule(shape1)
    util.check_shape_rule(shape2)

    util.check_shape_size(shape1, SHAPE_SIZE_LIMIT)
    util.check_shape_size(shape2, SHAPE_SIZE_LIMIT)

    check_list = ["float16", "float32", "int32"]
    device_api_map = {"float16": "cc_device_truncatemod_float16",
                      "float32": "cc_device_truncatemod_float",
                      "int32": "cc_device_truncatemod_int32"}

    dtype = dtype.lower()
    if dtype not in check_list:
        raise RuntimeError(
            "tf_truncatemod_cce only support %s while dtype is %s" % (
                ",".join(check_list), dtype))

    shape1, shape2, shape_out = util.produce_shapes(shape1, shape2)
    util.check_shape_size(shape_out, SHAPE_SIZE_LIMIT)

    inp_dtype = dtype.lower()

    device_api = device_api_map[inp_dtype]

    # block
    block_num = "block_num"
    block_idx = "block_idx"
    # x param
    v_xndim_cnt = tvm.const(len(shape1), "int32")
    p_xshape = util.create_param_ptr(shape1, "int32", "p_xshape")
    xpad_c0 = tvm.const(0, "int32")
    data_input_x = tvm.placeholder(shape1, name="data_input_x",
                                   dtype=inp_dtype)
    # y param
    v_yndim_cnt = tvm.const(len(shape2), "int32")
    p_yshape = util.create_param_ptr(shape2, "int32", "p_yshape")
    ypad_c0 = tvm.const(0, "int32")
    data_input_y = tvm.placeholder(shape2, name="data_input_y",
                                   dtype=inp_dtype)
    # output
    v_out_ndim_cnt = tvm.const(len(shape_out), "int32")
    p_out_shape = util.create_param_ptr(shape_out, "int32", "p_yshape")
    out_padc0 = tvm.const(0, "int32")

    output = tvm.extern(shape_out,
                        [p_xshape, data_input_x, p_yshape, data_input_y,
                         p_out_shape], lambda ins, outs:
                        tvm.call_extern("int32_t", device_api,
                                        block_num,
                                        block_idx,
                                        v_xndim_cnt,
                                        ins[0].access_ptr("r"),  # shape x
                                        xpad_c0,
                                        ins[1].access_ptr("r"),  # input x
                                        v_yndim_cnt,
                                        ins[2].access_ptr("r"),  # shape y
                                        ypad_c0,
                                        ins[3].access_ptr("r"),  # input y
                                        v_out_ndim_cnt,
                                        ins[4].access_ptr("r"),  # shape out
                                        out_padc0,
                                        outs[0].access_ptr("w")),
                        name="output", dtype=inp_dtype)

    schedule = tvm.create_schedule(output.op)

    # print IR
    if need_print:
        with build_config:
            print(tvm.lower(schedule, [data_input_x, data_input_y, output],
                            simple_mode=True))
            # Compile to generate the cce file
    if need_build:
        with build_config:
            tvm.build(schedule, [data_input_x, data_input_y, output], "cce",
                      name=kernel_name)
コード例 #27
0
def CusMatMulCube(input_x1, input_x2, bias=None, output_y={}, trans_a=False, trans_b=False, kernel_name="matmulcube"):
    """
    calculating  matrix multiplication with bias, C = A*B + bias, support input
    data with fractal format.

    Parameters:
    shape_a: list or tuple
            Shape of the first tensor a with rank > 1
    shape_b:  list or tuple
            Shape of the second tensor b with the same type with a,
            and shape_a, shape_b must be 2 dims
    src_dtype: str
            The data type of input, support "float32", "float16"
    dst_dtype: str
            The data type of output, support "float32", "float16"
    trans_a: bool
            If True, shape_a == transposed before multiplication
    trans_b: bool
            If True, shape_b == transposed before multiplication
    is_fractal: bool
            If True, the input data format of a and b must be fractal format
    shape_bias: list or tuple
            Shape of bias, only support the input data format with ND

    Returns
    -------
    None
    """
    shape_a = input_x1.get("ori_shape")
    shape_b = input_x2.get("ori_shape")

    if shape_a is not None:
        if len(shape_a) < 2:
            shape_a = input_x1.get("shape")

    if shape_b is not None:
        if len(shape_b) < 2:
            shape_b = input_x2.get("shape")

    shape_a = list(shape_a)
    shape_b = list(shape_b)

    if input_x1.get("format") == "FRACTAL_NZ":
        shape_a = _get_input_shape(shape_a)
        shape_b = _get_input_shape(shape_b)

    util.check_kernel_name(kernel_name)
    util.check_shape_rule(shape_a)
    util.check_shape_rule(shape_b)
    util.check_shape_size(shape_a, SHAPE_SIZE_LIMIT)
    util.check_shape_size(shape_b, SHAPE_SIZE_LIMIT)

    if input_x1.get("format") == "FRACTAL_NZ":
        shape_a = [shape_a[1], shape_a[0]]
        trans_a = bool(1 - trans_a)

    if input_x2.get("format") == "FRACTAL_NZ":
        shape_b = [shape_b[1], shape_b[0]]
        trans_b = bool(1 - trans_b)

    shape_bias = ()
    if bias is not None and bool(bias):
        shape_bias = bias.get("shape")
        shape_bias = list(shape_bias)
        shape_bias = _get_bias(shape_bias)

    src_dtype = input_x1.get("dtype").lower()
    dst_dtype = output_y.get("dtype").lower()
    if src_dtype in ("float32", "int32"):
        matmul_vector_cce(shape_a, shape_b, src_dtype, trans_a, trans_b, shape_bias, kernel_name)
        return
    _shape_check(shape_a, shape_b, shape_bias, src_dtype, trans_a, trans_b)
    m_shape = shape_a[len(shape_a) - 2]
    km_shape = shape_a[len(shape_a) - 1]
    kn_shape = shape_b[len(shape_a) - 2]
    n_shape = shape_b[len(shape_a) - 1]

    if src_dtype == "float16":
        block_reduce = cce.BLOCK_REDUCE

    block_in = cce.BLOCK_IN
    block_out = cce.BLOCK_OUT

    if trans_a and km_shape == 1:
        block_in = cce.BLOCK_VECTOR

    if not trans_a and m_shape == 1:
        block_in = cce.BLOCK_VECTOR

    if trans_b and kn_shape == 1:
        block_out = cce.BLOCK_VECTOR

    if not trans_b and n_shape == 1:
        block_out = cce.BLOCK_VECTOR

    if trans_a:
        shape_a_temp = (m_shape // block_reduce, km_shape // block_in, block_reduce, block_in)
    else:
        shape_a_temp = (m_shape // block_in, km_shape // block_reduce, block_in, block_reduce)

    if trans_b:
        shape_b_temp = (kn_shape // block_out, n_shape // block_reduce, block_reduce, block_out)
    else:
        shape_b_temp = (kn_shape // block_reduce, n_shape // block_out, block_out, block_reduce)

    if input_x1.get("format") == "FORMAT_FRACTAL_Z":
        shape_a_temp = (shape_a_temp[0], shape_a_temp[1], shape_a_temp[2], shape_a_temp[3])
        format_a = "fractal"
    elif input_x1.get("format") == "FRACTAL_NZ":
        shape_a_temp = (shape_a_temp[0], shape_a_temp[1], shape_a_temp[2], shape_a_temp[3])
        format_a = "FRACTAL_NZ"
    else:
        shape_a_temp = (shape_a[len(shape_a) - 2], shape_a[len(shape_a) - 1])
        format_a = "ND"

    if input_x2.get("format") == "FORMAT_FRACTAL_Z":
        shape_b_temp = (shape_b_temp[0], shape_b_temp[1], shape_b_temp[2], shape_b_temp[3])
        format_b = "fractal"
    elif input_x2.get("format") == "FRACTAL_NZ":
        shape_b_temp = (shape_b_temp[0], shape_b_temp[1], shape_b_temp[2], shape_b_temp[3])
        format_b = "FRACTAL_NZ"
    else:
        shape_b_temp = (shape_b[len(shape_b) - 2], shape_b[len(shape_b) - 1])
        format_b = "ND"

    tensor_bias = None
    tensor_a = tvm.placeholder(shape_a_temp, name='tensor_a',
                               dtype=src_dtype)
    tensor_b = tvm.placeholder(shape_b_temp, name='tensor_b',
                               dtype=src_dtype)

    if shape_bias:
        tensor_bias = tvm.placeholder(shape_bias, name='tensor_bias',
                                      dtype=dst_dtype)
    result = te.lang.cce.matmul(tensor_a, tensor_b, trans_a, trans_b, format_a=format_a,
                                format_b=format_b, dst_dtype=dst_dtype, tensor_bias=tensor_bias)

    with tvm.target.cce():
        schedule = generic.auto_schedule(result)

    tensor_list = [tensor_a, tensor_b, result]
    if shape_bias:
        tensor_list = [tensor_a, tensor_b, tensor_bias, result]

    config = {"print_ir": False,
              "name": kernel_name,
              "tensor_list": tensor_list}

    te.lang.cce.cce_build_code(schedule, config)
コード例 #28
0
def custom_Reduction(shape,
                     dtype,
                     axis,
                     op,
                     coeff,
                     kernel_name="cce_reductionLayer",
                     need_build=False,
                     need_print=False):
    """
    Reduce a tensor on a certain axis, and scale output with coeff

    Parameters
    ----------
    shape : shape of data

    dtype : source data type, only support float16, float32, int8, uint8

    axis : the first axis to reduce, may be negative to index from the end
           (e.g., -1 for the last axis).
           If axis == 0, the output Blob always has the empty shape (count 1),
           performing reduction across the entire input.

    op : can only be one of "SUM, ASUM (sum of abs), SUMSQ (sum of sqr), MEAN"

    coeff : scale for output

    kernel_name : cce kernel name, default value is "cce_reductionLayer"

    need_buid : if need to build CCEC kernel, default value is False

    need_print : if need to print the ir, default value is False

    Returns
    -------
    None

    """
    util.check_kernel_name(kernel_name)
    util.check_shape_rule(shape)

    check_list = ["float16", "float32", "int8", "uint8"]
    if not dtype.lower() in check_list:
        raise RuntimeError(
            "reductionLayer_cce only support %s while dtype is %s" %
            (",".join(check_list), dtype))

    reduction_op = ("SUM", "ASUM", "SUMSQ", "MEAN")

    if not isinstance(axis, int):
        raise RuntimeError("type of axis value should be int")
    if op not in reduction_op:
        raise RuntimeError("op can only be one of SUM, ASUM, SUMSQ , MEAN")
    if not isinstance(coeff, int) and not isinstance(coeff, float):
        raise RuntimeError("coeff must be a value")
    axis_origin = axis
    shape_origin = shape
    axis = util.axis_check(len(shape), axis)
    util.check_reduce_shape_rule(shape)
    shape = list(shape)
    shape1 = shape[:axis] + [
        functools_reduce(lambda x, y: x * y, shape[axis:])
    ]
    shape1, axis = util.shape_refine(shape1, axis)
    if not axis:
        axis = [0]
        shape1 = [1] + shape1
    inp_dtype = dtype.lower()
    data = tvm.placeholder(shape1, name="data_input", dtype=inp_dtype)
    with tvm.target.cce():
        res = caffe_reduction_layer_compute([data], shape_origin, dtype,
                                            axis_origin, op, coeff,
                                            kernel_name, need_build,
                                            need_print)

    if op == "MEAN" and (inp_dtype == "int8" or inp_dtype == "uint8"):
        util.check_shape_size(shape, SHAPE_SIZE_LIMIT)
        res = te.lang.cce.cast_to(res, inp_dtype)
        schedule = tvm.create_schedule(res.op)
        if need_print:
            with build_config:
                print(tvm.lower(schedule, [data, res], simple_mode=True))
        if need_build:
            with build_config:
                tvm.build(schedule, [data, res], "cce", name=kernel_name)
    else:
        with tvm.target.cce():
            sch = generic.auto_schedule(res)

        config = {
            "print_ir": need_print,
            "need_build": need_build,
            "name": kernel_name,
            "tensor_list": [data, res]
        }
        te.lang.cce.cce_build_code(sch, config)
コード例 #29
0
def custom_Exp(shape,
               dtype,
               gamma,
               alpha,
               beta,
               kernel_name="cce_exp",
               need_build=False,
               need_print=False):
    """
    calculate gamma **(alpha * data + beta),
    calculate exp(log(gamma) * alpha * data) * (gamma ** beta)

    Parameters
    ----------
    shape : shape of data

    dtype : the data type, assume src_dtype equals dst_dtype, only support \
    float16, float32

    gamma : the data type must be same with dtype parameter
        args in (alpha * data + beta) ** gamma, base

    alpha : the data type must be same with dtype parameter
        args in (alpha * data + beta) ** gamma, scale

    beta : the data type must be same with dtype parameter
        args in (alpha * data + beta) ** gamma, shift

    kernel_name : cce kernel name, default value is "cce_exp"

    need_buid : if need to build CCEC kernel, default value is False

    need_print : if need to print the ir, default value is False

    Returns
    -------
    None

    """
    supported_dtypes = ["float16", "float32"]
    device_api = "DeviceExp"

    util.check_kernel_name(kernel_name)
    util.check_shape_rule(shape)
    util.check_shape_size(shape, SHAPE_SIZE_LIMIT)

    if not dtype.lower() in supported_dtypes:
        raise RuntimeError(
            "caffe_exp_layer_cce only support %s while dtype is %s" %
            (",".join(supported_dtypes), dtype))

    if gamma != -1 and gamma <= 0:
        # api  cc_device_exp_c handle gamma == -1 as e
        raise ValueError(
            "please ensure gamma is greater than 0, where gamma = %s" %
            str(gamma))

    inp_dtype = dtype.lower()
    shape = util.shape_refine(shape)
    data_input = tvm.placeholder(shape, name="data_input", dtype=inp_dtype)

    v_datatype = util.get_device_api_dtype(inp_dtype)
    v_ndim = len(shape)
    block_num = "block_num"
    block_idx = "block_idx"
    pad_c0 = 0
    p_scale = util.create_param_ptr([alpha], inp_dtype, "p_scale")
    p_shift = util.create_param_ptr([beta], inp_dtype, "p_shift")
    p_base = util.create_param_ptr([gamma], inp_dtype, "p_base")
    p_shape = util.create_param_ptr(shape, "int32", "p_shape")

    # scale --> alpha, shitf --> beta, base --> gamma
    output = tvm.extern(
        shape,
        [data_input, p_scale, p_shift, p_base, p_shape],
        lambda ins, outs: tvm.call_extern(
            "int32_t",
            device_api,
            block_num,
            block_idx,
            v_datatype,
            ins[1].access_ptr("r"),  # scale
            ins[2].access_ptr("r"),  # shift
            ins[3].access_ptr("r"),  # base
            v_ndim,
            ins[4].access_ptr("r"),  # shape
            pad_c0,
            ins[0].access_ptr("r"),  # input x
            outs[0].access_ptr("w")),
        name="output",
        dtype=inp_dtype)

    schedule = tvm.create_schedule(output.op)

    if need_print:
        with build_config:
            print(tvm.lower(schedule, [data_input, output], simple_mode=True))
    if need_build:
        with build_config:
            tvm.build(schedule, [data_input, output], "cce", name=kernel_name)
コード例 #30
0
def custom_batch_matmul(shape_x,
                        shape_y,
                        dtype,
                        trans_a=False,
                        trans_b=False,
                        kernel_name="cce_tf_batch_matmul",
                        need_build=False,
                        need_print=False):
    """
    Multiplies slices of two tensors in batches(each slice can be viewed
    as an element of a batch), the output is of the same batch size.

    Each of the individual slices can optionally be transposed before
    multiplication by setting the trans_a or trans_b flag to True, which
    are by default False. The input tensors are 2-D or higher with the
    shape [..., r_x, c_x] and [..., r_y, c_y]. The output tensor is 2-D
    or higher with the shape [..., r_o, c_o], where
    r_o = c_x if trans_a else r_x
    c_o = r_y if trans_b else c_y

    Parameters
    ----------
    shape_x : shape of the first tensor x with rank > 1

    shape_y : shape of the second tensor y with the same type and shape with x

    dtype : the data type, support int8, uint8,float16,float32,int32

    kernel_name : cce kernel name, default value is "cce_batch_matmul"

    trans_a : if True, shape_x is transposed before multiplication

    trans_b : if True, shape_y is transposed before multiplication

    need_buid : if need to build CCEC kernel, default value is False

    need_print : if need to print the ir, default value is False

    Returns
    -------
    None
    """
    util.check_kernel_name(kernel_name)
    util.check_shape_rule(shape_x)
    util.check_shape_rule(shape_y)

    util.check_shape_size(shape_x, SHAPE_SIZE_LIMIT)
    util.check_shape_size(shape_y, SHAPE_SIZE_LIMIT)

    data_dtype = dtype.lower()
    check_list = ["int8", "uint8", "float16", "float32", "int32"]
    if data_dtype not in check_list:
        raise RuntimeError(
            "batch_matmul_cce ony supports %s while dtype is %s" %
            (",".join(check_list), dtype))

    def transpose_tensor(shape, size):
        """Transpose the shape, e.g., the shape [..., r_x, c_x] is transposed
        to [..., c_x, r_x].

        Parameters
        ----------
        shape : shape of a tensor

        size : length of the shape

        Returns
        -------
        shape_ori : the transposed shape
        """
        shape_ori = ()
        if size == 1:
            shape_ori = shape_ori + shape
        elif size == 2:
            shape_ori = shape_ori + (shape[1], ) + (shape[0], )
        else:
            shape_ori = shape_ori + (shape[:(size - 2)]) + (
                shape[size - 1], ) + (shape[size - 2], )
        return shape_ori

    def check_matmul(shape_x, shape_y):
        """Check whether batch_matmul is supported or not.

        Parameters
        ----------
        shape_x : shape of the first tensor x

        shape_y : shape of the second tensor y with the same type and shape
        with x

        Returns
        -------
        None
        """
        len_x = len(shape_x)
        len_y = len(shape_y)
        if (len_x < 2) or (len_y < 2):
            raise RuntimeError("Only tensors of rank>=2 are supported!")
        if shape_x[len_x - 1] != shape_y[len_y - 2]:
            raise RuntimeError(
                "Invalid matrix multiplication for the inner 2 dimensions!")
        if (len_x == len_y) and (len_x > 2):
            for i in range(len_x - 2):
                if shape_x[i] != shape_y[i]:
                    raise RuntimeError("Outer dimensions do not match!")
            return
        elif (len_x == len_y) and (len_x == 2):
            return
        else:
            raise RuntimeError("The input tensors are not with the same rank!")

    def _compute(output_shape, x, y, K, trans_a, trans_b, *indices):
        """matmul compuation in terms of the output shape and the transposes

        Parameters
        ----------
        output_shape : the final output shape, e.g., shape_x = (2, 6),
            shape_y = (8, 2), trans_a = True, True_b = True, then,
            output_shape = (6, 8).

        x : the first input tensor according to shape_x.

        y : the second input tensor according to shape_y.

        K : the number of the axis for sum, in the above example, K = 2.

        trans_a : if True, x needs to be transposed.

        trans_b : if True, y needs to be transposed.

        *indices : the output shape space for tvm.compute.

        Returns
        -------
        tvm.Tensor
        """
        n_len = len(output_shape)
        k = tvm.reduce_axis((0, K), 'k')
        if trans_a is True and trans_b is False:
            # For example, A: (6, 7, 8), B: (6, 7, 9), so the length is n = 3
            # C = A' * B : (6, 8, 9), A' means the transpose of A
            # indices means the space of (6, 8, 9), k = 7
            # x_indices = indices[:1]+(7, )+indices[1:2] = (6, 7, 8)
            # y_indices = indices[:1]+(7, )+indices[2:] = (6, 7, 9)
            x_indices = indices[:(n_len - 2)] + (k, ) + indices[(n_len - 2):
                                                                (n_len - 1)]
            y_indices = indices[:(n_len - 2)] + (k, ) + indices[(n_len - 1):]
            return tvm.sum(x(*x_indices) * y(*y_indices), axis=k)
        elif not trans_a and trans_b:
            # For example, A: (6, 7, 8), B: (6, 9, 8), C = A * B' : (6, 7, 9)
            # indices means the space of (6, 7, 9), n=3, k = 8
            # x_indices = indices[:2]+(8, ) = (6, 7, 8)
            # y_indices = indices[:1]+indices[2:]+(8, ) = (6, 9, 8)
            x_indices = indices[:(n_len - 1)] + (k, )
            y_indices = indices[:(n_len - 2)] + indices[(n_len - 1):] + (k, )
            return tvm.sum(x(*x_indices) * y(*y_indices), axis=k)
        elif trans_a and trans_b:
            # For example, A: (6, 8, 10), B: (6, 12, 8), C = A' * B' : \
            # (6, 10, 12)
            # indices means the space of (6, 10, 12), n=3, k = 8
            # x_indices = indices[:1]+(8, )+indices[1:2] = (6, 8, 10)
            # y_indices = indices[:1]+indices[2:]+(8, ) = (6, 12, 8)
            x_indices = indices[:(n_len - 2)] + (k, ) + indices[(n_len - 2):
                                                                (n_len - 1)]
            y_indices = indices[:(n_len - 2)] + indices[(n_len - 1):] + (k, )
            return tvm.sum(x(*x_indices) * y(*y_indices), axis=k)
        else:
            # For example, A: (6, 15, 16), B: (6, 16, 18), C = A * B : \
            # (6, 15, 18)
            # indices means the space of (6, 15, 18), n=3, k = 16
            # x_indices = indices[:2]+(16, ) = (6, 15, 16)
            # y_indices = indices[:1]+(16, )+indices[2:] = (6, 16, 18)
            x_indices = indices[:(n_len - 1)] + (k, )
            y_indices = indices[:(n_len - 2)] + (k, ) + indices[(n_len - 1):]
            return tvm.sum(x(*x_indices) * y(*y_indices), axis=k)

    def check_supportted_shape_size(shape_x, shape_y, limit, trans_a, trans_b):
        """
        check shape size for operator
        ----------
        shape: shape of data

        limit: limit of the product

        Returns
        -------
        None
        """
        # This function is used to check whether the shape is too large to \
        # cause a timeout.
        # shape_x = (a,b,c,d,e,k)  shape_y = (a,b,c,d,k,f)
        # t_1 : time consumed by each addition operation
        # t_2 : time consumed by each multiplication operation
        # t_all : time consumed by a complete calculation
        # t_all is approximately equal to (a*b*c*d)*(e*k*f)*(t_1+t_2)
        # As (t_1 + t_2) is a constant, so t_all is proportional to \
        # (a * b * c * d * e * k * f)

        len_x = len(shape_x)
        len_y = len(shape_y)
        if (len_x < 2) or (len_y < 2):
            raise RuntimeError("Only tensors of rank>=2 are supported!")

        shape_x = list(shape_x)
        shape_y = list(shape_y)

        tmp_shape_x = shape_x[:]
        if trans_a:
            tmp_shape_x = shape_x[:-2] + [shape_x[-1], shape_x[-2]]

        tmp_shape_y = shape_y[:]
        if trans_b:
            tmp_shape_y = shape_y[:-2] + [shape_y[-1], shape_y[-2]]

        union_shape = tmp_shape_x + [tmp_shape_y[-1]]

        union_size = reduce(lambda i, j: i * j, union_shape)

        if union_size > limit:
            raise RuntimeError("the shape is too large to calculate")

    if data_dtype in ["float16", "float32", "int32"]:
        type_shape_map = {
            'float16': SHAPE_SIZE_FP16_LIMIT,
            'float32': SHAPE_SIZE_FP32_LIMIT,
            'int32': SHAPE_SIZE_INT32_LIMIT
        }

        check_supportted_shape_size(shape_x, shape_y,
                                    type_shape_map[data_dtype], trans_a,
                                    trans_b)

    x_size = len(shape_x)
    y_size = len(shape_y)
    shape_a = shape_x
    shape_b = shape_y
    if trans_a is True:
        shape_x = transpose_tensor(shape_x, x_size)

    if trans_b is True:
        shape_y = transpose_tensor(shape_y, y_size)

    check_matmul(shape_x, shape_y)
    last_axis = shape_x[x_size - 1]

    x_temp = tvm.placeholder(shape_a, name="input_1", dtype=data_dtype)
    y_temp = tvm.placeholder(shape_b, name="input_2", dtype=data_dtype)

    # output shape
    output_shape = ()
    for i in range(x_size - 1):
        output_shape = output_shape + (shape_x[i], )
    output_shape = output_shape + (shape_y[x_size - 1], )
    result = tvm.compute(
        output_shape,
        lambda *indices: _compute(output_shape, x_temp, y_temp, last_axis,
                                  trans_a, trans_b, *indices),
        name="result")
    schedule = tvm.create_schedule(result.op)

    if need_print:
        with build_config:
            print(
                tvm.lower(schedule, [x_temp, y_temp, result],
                          simple_mode=True))
    if need_build:
        with build_config:
            tvm.build(schedule, [x_temp, y_temp, result],
                      "cce",
                      name=kernel_name)