コード例 #1
0
ファイル: multibox.py プロジェクト: wliang410/tvm-yolov3
def multibox_prior(data, sizes=(1,), ratios=(1,), steps=(-1, -1), offsets=(0.5, 0.5), clip=False):
    """Generate prior(anchor) boxes from data, sizes and ratios.

    Parameters
    ----------
    data : tvm.Tensor
        4-D with shape [batch, c_in, h_in, w_in]]

    sizes : tuple of float
        Tuple of sizes for anchor boxes.

    ratios : tuple of float
        Tuple of ratios for anchor boxes.

    steps : Tuple of float
        Priorbox step across y and x, -1 for auto calculation.

    offsets : tuple of int
        Priorbox center offsets, y and x respectively.

    clip : boolean
        Whether to clip out-of-boundary boxes.

    Returns
    -------
    out : tvm.Tensor
        3-D tensor with shape [1, h_in * w_in * (num_sizes + num_ratios - 1), 4]
    """
    out = hybrid_multibox_prior(data, tvm.convert(sizes), tvm.convert(ratios),
                                tvm.convert(steps), tvm.convert(offsets))
    if clip:
        out = topi.clip(out, 0, 1)
    return out
コード例 #2
0
def verify_clip(N, a_min, a_max, dtype):
    A = tvm.placeholder((N, N), dtype=dtype, name='A')
    B = topi.clip(A, a_min, a_max)
    s = tvm.create_schedule([B.op])

    # use memoize to pickle the test data for next time use
    @memoize("topi.tests.test_topi_clip")
    def get_ref_data():
        a_np = np.random.uniform(a_min * 2, a_max * 2,
                                 size=(N, N)).astype(dtype)
        b_np = np.clip(a_np, a_min, a_max)
        return a_np, b_np

    a_np, b_np = get_ref_data()

    def check_device(device):
        ctx = tvm.context(device, 0)
        if not ctx.exist:
            print("Skip because %s is not enabled" % device)
            return
        print("Running on target: %s" % device)
        with tvm.target.create(device):
            s = topi.generic.schedule_injective(B)

        a = tvm.nd.array(a_np, ctx)
        b = tvm.nd.array(np.zeros(get_const_tuple(B.shape), dtype=dtype), ctx)
        f = tvm.build(s, [A, B], device, name="clip")
        f(a, b)
        np.testing.assert_allclose(b.asnumpy(), b_np, rtol=1e-5)

    for device in get_all_backend():
        check_device(device)
コード例 #3
0
ファイル: multibox.py プロジェクト: bddppq/tvm
def multibox_prior(data, sizes=(1,), ratios=(1,), steps=(-1, -1), offsets=(0.5, 0.5), clip=False):
    """Generate prior(anchor) boxes from data, sizes and ratios.

    Parameters
    ----------
    data : tvm.Tensor
        4-D with shape [batch, c_in, h_in, w_in]]

    sizes : tuple of float
        Tuple of sizes for anchor boxes.

    ratios : tuple of float
        Tuple of ratios for anchor boxes.

    steps : Tuple of float
        Priorbox step across y and x, -1 for auto calculation.

    offsets : tuple of int
        Priorbox center offsets, y and x respectively.

    clip : boolean
        Whether to clip out-of-boundary boxes.

    Returns
    -------
    out : tvm.Tensor
        3-D tensor with shape [1, h_in * w_in * (num_sizes + num_ratios - 1), 4]
    """
    out = hybrid_multibox_prior(data, tvm.convert(sizes), tvm.convert(ratios),
                                tvm.convert(steps), tvm.convert(offsets))
    if clip:
        out = topi.clip(out, 0, 1)
    return out
コード例 #4
0
ファイル: test_topi_clip.py プロジェクト: LANHUIYING/tvm
def verify_clip(N, a_min, a_max, dtype):
    A = tvm.placeholder((N, N), dtype=dtype, name='A')
    B = topi.clip(A, a_min, a_max)
    s = tvm.create_schedule([B.op])

    # use memoize to pickle the test data for next time use
    @memoize("topi.tests.test_topi_clip")
    def get_ref_data():
        a_np = np.random.uniform(a_min*2, a_max*2, size=(N, N)).astype(dtype)
        b_np = np.clip(a_np, a_min, a_max)
        return a_np, b_np
    a_np, b_np = get_ref_data()

    def check_device(device):
        ctx = tvm.context(device, 0)
        if not ctx.exist:
            print("Skip because %s is not enabled" % device)
            return
        print("Running on target: %s" % device)
        with tvm.target.create(device):
            s = topi.generic.schedule_injective(B)

        a = tvm.nd.array(a_np, ctx)
        b = tvm.nd.array(np.zeros(get_const_tuple(B.shape), dtype=dtype), ctx)
        f = tvm.build(s, [A, B], device, name="clip")
        f(a, b)
        tvm.testing.assert_allclose(b.asnumpy(), b_np, rtol=1e-5)

    for device in get_all_backend():
        check_device(device)
コード例 #5
0
ファイル: test_topi_clip.py プロジェクト: gwli/tvm
def verify_clip(N, a_min, a_max, dtype):
    A = tvm.placeholder((N, N), dtype=dtype, name='A')
    B = topi.clip(A, a_min, a_max)
    s = tvm.create_schedule([B.op])

    # use memoize to pickle the test data for next time use
    @memoize("topi.tests.test_topi_clip")
    def get_ref_data():
        a_np = np.random.uniform(a_min*2, a_max*2, size=(N, N)).astype(dtype)
        b_np = np.clip(a_np, a_min, a_max)
        return a_np, b_np
    a_np, b_np = get_ref_data()

    def check_device(device):
        if not tvm.module.enabled(device):
            print("Skip because %s is not enabled" % device)
            return
        ctx = tvm.cpu(0) if device == "llvm" else tvm.gpu(0)
        a = tvm.nd.array(a_np, ctx)
        b = tvm.nd.array(np.zeros(get_const_tuple(B.shape), dtype=dtype), ctx)
        f = tvm.build(s, [A, B], device, name="clip")
        f(a, b)
        np.testing.assert_allclose(b.asnumpy(), b_np, rtol=1e-5)

    for device in ['llvm']:
        check_device(device)
コード例 #6
0
def verify_clip(N, a_min, a_max, dtype):
    A = tvm.placeholder((N, N), dtype=dtype, name='A')
    B = topi.clip(A, a_min, a_max)
    s = tvm.create_schedule([B.op])

    # use memoize to pickle the test data for next time use
    @memoize("topi.tests.test_topi_clip")
    def get_ref_data():
        a_np = np.random.uniform(a_min * 2, a_max * 2,
                                 size=(N, N)).astype(dtype)
        b_np = np.clip(a_np, a_min, a_max)
        return a_np, b_np

    a_np, b_np = get_ref_data()

    def check_device(device):
        if not tvm.module.enabled(device):
            print("Skip because %s is not enabled" % device)
            return
        ctx = tvm.cpu(0) if device == "llvm" else tvm.gpu(0)
        a = tvm.nd.array(a_np, ctx)
        b = tvm.nd.array(np.zeros(get_const_tuple(B.shape), dtype=dtype), ctx)
        f = tvm.build(s, [A, B], device, name="clip")
        f(a, b)
        np.testing.assert_allclose(b.asnumpy(), b_np, rtol=1e-5)

    for device in ['llvm']:
        check_device(device)
コード例 #7
0
def multibox_prior_gpu(data,
                       sizes=(1, ),
                       ratios=(1, ),
                       steps=(-1, -1),
                       offsets=(0.5, 0.5),
                       clip=False):
    """Generate prior(anchor) boxes from data, sizes and ratios.

    Parameters
    ----------
    data : tvm.Tensor
        4-D with shape [batch, c_in, h_in, w_in]]

    sizes : tuple of float
        Tuple of sizes for anchor boxes.

    ratios : tuple of float
        Tuple of ratios for anchor boxes.

    steps : Tuple of float
        Priorbox step across y and x, -1 for auto calculation.

    offsets : tuple of int
        Priorbox center offsets, y and x respectively.

    clip : boolean
        Whether to clip out-of-boundary boxes.

    Returns
    -------
    out : tvm.Tensor
        3-D tensor with shape [1, h_in * w_in * (num_sizes + num_ratios - 1), 4]
    """
    num_sizes = len(sizes)
    num_ratios = len(ratios)
    oshape = (1, data.shape[2] * data.shape[3] * (num_sizes + num_ratios - 1),
              4)
    out = tvm.extern(oshape, [data],
                     lambda ins, outs: multibox_prior_ir(
                         ins[0], outs[0], sizes, ratios, steps, offsets),
                     tag="multibox_prior")
    if clip:
        out = topi.clip(out, 0, 1)
    return out
コード例 #8
0
ファイル: multibox.py プロジェクト: LANHUIYING/tvm
def multibox_prior_gpu(data, sizes=(1,), ratios=(1,), steps=(-1, -1),
                       offsets=(0.5, 0.5), clip=False):
    """Generate prior(anchor) boxes from data, sizes and ratios.

    Parameters
    ----------
    data : tvm.Tensor
        4-D with shape [batch, c_in, h_in, w_in]]

    sizes : tuple of float
        Tuple of sizes for anchor boxes.

    ratios : tuple of float
        Tuple of ratios for anchor boxes.

    steps : Tuple of float
        Priorbox step across y and x, -1 for auto calculation.

    offsets : tuple of int
        Priorbox center offsets, y and x respectively.

    clip : boolean
        Whether to clip out-of-boundary boxes.

    Returns
    -------
    out : tvm.Tensor
        3-D tensor with shape [1, h_in * w_in * (num_sizes + num_ratios - 1), 4]
    """
    num_sizes = len(sizes)
    num_ratios = len(ratios)
    oshape = (
        1, data.shape[2] * data.shape[3] * (num_sizes + num_ratios - 1), 4)
    out = tvm.extern(oshape, [data], lambda ins, outs:
                     multibox_prior_ir(
                         ins[0], outs[0], sizes, ratios, steps, offsets),
                     tag="multibox_prior")
    if clip:
        out = topi.clip(out, 0, 1)
    return out
コード例 #9
0
def clip_compute(attrs, inputs, output_type, target):
    assert len(inputs) == 1
    return [topi.clip(inputs[0], attrs.a_min, attrs.a_max)]
コード例 #10
0
    def _interpolate(im, im_shape, x, y, out_size, dtype):
        
        num_batch = im_shape[0]
        height = im_shape[1]
        width = im_shape[2]
        channels = im_shape[3]
            
        out_height = out_size[0]
        out_width = out_size[1]
        max_y = int(im_shape[1] - 1)
        max_x = int(im_shape[2] - 1)
               
        #[-1,1] -> [0, width-1]
        x = topi.multiply(topi.add(x, tvm.const(1, dtype=dtype)), width / tvm.const(2, dtype=dtype))
        y = topi.multiply(topi.add(y, tvm.const(1, dtype=dtype)), height / tvm.const(2, dtype=dtype))
            
        # do sampling
        dim3 = out_height * out_width * num_batch
            
        x0 = topi.cast(topi.floor(x), 'int32')  
        y0 = topi.cast(topi.floor(y), 'int32')
        x1 = topi.add(x0,tvm.const(1, dtype="int32"))
        y1 = topi.add(y0,tvm.const(1, dtype="int32"))

        x0 = topi.clip(x0, 0, max_x)
        x1 = topi.clip(x1, 0, max_x)
        y0 = topi.clip(y0, 0, max_y)
        y1 = topi.clip(y1, 0, max_y)

        dim2 = width
        dim1 = width * height

        base = tvm.compute((dim3,),lambda i:(i // (out_height * out_width)) * width * height, name = 'base')        
        base_y0 = topi.add(base, topi.multiply(y0, dim2))
        base_y1 = topi.add(base, topi.multiply(y1, dim2))

        idx_a = topi.add(base_y0, x0)
        idx_b = topi.add(base_y1, x0)
        idx_c = topi.add(base_y0, x1)
        idx_d = topi.add(base_y1, x1)
                
        im_flat = topi.reshape(im, (num_batch * height * width, channels))
        im_flat = topi.cast(im_flat, dtype)
        
        Ia = tvm.compute((dim3, channels),lambda i,j: im_flat[idx_a[i], j], name = 'Ia')       
        Ib = tvm.compute((dim3, channels),lambda i,j: im_flat[idx_b[i], j], name = 'Ib') 
        Ic = tvm.compute((dim3, channels),lambda i,j: im_flat[idx_c[i], j], name = 'Ic')
        Id = tvm.compute((dim3, channels),lambda i,j: im_flat[idx_d[i], j], name = 'Id')
            
        x0_f = topi.cast(x0, dtype)
        x1_f = topi.cast(x1, dtype)
        y0_f = topi.cast(y0, dtype)
        y1_f = topi.cast(y1, dtype)
        wa = topi.expand_dims(topi.multiply(topi.subtract(x1_f, x), topi.subtract(y1_f, y)), 1)
        wb = topi.expand_dims(topi.multiply(topi.subtract(x1_f, x), topi.subtract(y, y0_f)), 1)
        wc = topi.expand_dims(topi.multiply(topi.subtract(x, x0_f), topi.subtract(y1_f, y)), 1)
        wd = topi.expand_dims(topi.multiply(topi.subtract(x, x0_f), topi.subtract(y, y0_f)), 1)
 
        output = topi.add(topi.add(topi.add(topi.multiply(wa, Ia), topi.multiply(wb, Ib)),topi.multiply(wc, Ic)), topi.multiply(wd, Id))
        
        return output
コード例 #11
0
    def _interpolate(im, im_shape, x, y, out_size, dtype):

        num_batch = im_shape[0]
        height = im_shape[1]
        width = im_shape[2]
        channels = im_shape[3]

        out_height = out_size[0]
        out_width = out_size[1]
        max_y = int(im_shape[1] - 1)
        max_x = int(im_shape[2] - 1)

        # [-1,1] -> [0, width-1]
        x_temp = topi.multiply(topi.add(x, tvm.const(1, dtype=dtype)),
                               width / tvm.const(2, dtype=dtype))
        y_temp = topi.multiply(topi.add(y, tvm.const(1, dtype=dtype)),
                               height / tvm.const(2, dtype=dtype))

        # do sampling
        dim3 = out_height * out_width * num_batch

        x_zero = topi.cast(topi.floor(x_temp), 'int32')
        y_zero = topi.cast(topi.floor(y_temp), 'int32')
        x_one = topi.add(x_zero, tvm.const(1, dtype="int32"))
        y_one = topi.add(y_zero, tvm.const(1, dtype="int32"))

        x_zero = topi.clip(x_zero, 0, max_x)
        x_one = topi.clip(x_one, 0, max_x)
        y_zero = topi.clip(y_zero, 0, max_y)
        y_one = topi.clip(y_one, 0, max_y)

        dim2 = width

        base = tvm.compute((dim3, ),
                           lambda i:
                           (i // (out_height * out_width)) * width * height,
                           name='base')
        base_y0 = topi.add(base, topi.multiply(y_zero, dim2))
        base_y1 = topi.add(base, topi.multiply(y_one, dim2))

        idx_a = topi.add(base_y0, x_zero)
        idx_b = topi.add(base_y1, x_zero)
        idx_c = topi.add(base_y0, x_one)
        idx_d = topi.add(base_y1, x_one)

        im_flat = topi.reshape(im, (num_batch * height * width, channels))
        im_flat = topi.cast(im_flat, dtype)

        i_a = tvm.compute((dim3, channels),
                          lambda i, j: im_flat[idx_a[i], j],
                          name='Ia')
        i_b = tvm.compute((dim3, channels),
                          lambda i, j: im_flat[idx_b[i], j],
                          name='Ib')
        i_c = tvm.compute((dim3, channels),
                          lambda i, j: im_flat[idx_c[i], j],
                          name='Ic')
        i_d = tvm.compute((dim3, channels),
                          lambda i, j: im_flat[idx_d[i], j],
                          name='Id')

        x0_f = topi.cast(x_zero, dtype)
        x1_f = topi.cast(x_one, dtype)
        y0_f = topi.cast(y_zero, dtype)
        y1_f = topi.cast(y_zero, dtype)
        w_a = topi.expand_dims(
            topi.multiply(topi.subtract(x1_f, x_temp),
                          topi.subtract(y1_f, y_temp)), 1)
        w_b = topi.expand_dims(
            topi.multiply(topi.subtract(x1_f, x_temp),
                          topi.subtract(y_temp, y0_f)), 1)
        w_c = topi.expand_dims(
            topi.multiply(topi.subtract(x_temp, x0_f),
                          topi.subtract(y1_f, y_temp)), 1)
        w_d = topi.expand_dims(
            topi.multiply(topi.subtract(x_temp, x0_f),
                          topi.subtract(y_temp, y0_f)), 1)

        output = topi.add(
            topi.add(
                topi.add(topi.multiply(w_a, i_a), topi.multiply(w_b, i_b)),
                topi.multiply(w_c, i_c)), topi.multiply(w_d, i_d))

        return output
コード例 #12
0
ファイル: _tensor.py プロジェクト: bddppq/tvm
def clip_compute(attrs, inputs, output_type, target):
    assert len(inputs) == 1
    return [topi.clip(inputs[0], attrs.a_min, attrs.a_max)]