コード例 #1
0
def compute_conv2d_transpose(attrs, inputs, _):
    """Compute definition of conv2d_transpose"""
    padding = attrs.get_int_tuple("padding")
    strides = attrs.get_int_tuple("strides")
    dilation = attrs.get_int_tuple("dilation")
    groups = attrs.get_int("groups")
    out_dtype = attrs.get_string("out_dtype")
    layout = attrs["layout"]
    out_dtype = inputs[0].dtype if out_dtype == "same" else out_dtype

    assert layout == "NCHW", "only support nchw for now"
    assert dilation == (1, 1), "not support dilate now"
    assert groups == 1, "only support groups == 1 for now"

    with tvm.target.create(attrs.get_string("target")):
        out = topi.nn.conv2d_transpose_nchw(inputs[0], inputs[1], strides,
                                            padding, out_dtype)
        if attrs.get_bool("use_bias"):
            bias = inputs[2]
            bias = topi.expand_dims(bias, axis=1, num_newaxis=2)
            out = topi.add(out, bias)
        output_padding = attrs.get_int_tuple("output_padding")
        out = topi.nn.pad(out, \
            [0, 0, 0, 0], [0, 0, output_padding[0], output_padding[1]])
        return out
コード例 #2
0
ファイル: nn.py プロジェクト: bddppq/tvm
def compute_contrib_conv2d_NCHWc(attrs, inputs, _):
    """Compute definition of conv2d NCHWc"""
    padding = attrs.get_int_tuple("padding")
    strides = attrs.get_int_tuple("strides")
    dilation = attrs.get_int_tuple("dilation")
    out_channel = attrs.get_int("channels")
    groups = attrs.get_int("groups")
    layout = attrs.get_str("layout")
    out_layout = attrs.get_str("out_layout")
    out_dtype = attrs.get_str("out_dtype")
    out_dtype = inputs[0].dtype if out_dtype == "same" else out_dtype
    if layout == "NCHW":
        _, in_channel, _, _ = get_const_tuple(inputs[0].shape)
    else:
        _, in_channel_chunk, _, _, in_channel_block = get_const_tuple(inputs[0].shape)
        in_channel = in_channel_chunk * in_channel_block
    assert dilation == (1, 1), "not support dilate now"
    if groups == 1:
        # pylint: disable=assignment-from-no-return
        out = topi.nn.conv2d_NCHWc(inputs[0], inputs[1], strides, padding, dilation,
                                   layout, out_layout, out_dtype)
        # pylint: enable=assignment-from-no-return
    elif groups == in_channel and groups == out_channel:
        # pylint: disable=assignment-from-no-return
        out = topi.nn.depthwise_conv2d_NCHWc(inputs[0], inputs[1], strides, padding,
                                             dilation, layout, out_layout, out_dtype)
        # pylint: enable=assignment-from-no-return
    else:
        raise ValueError("not support arbitrary group number > 1 for now")
    if attrs.get_bool("use_bias"):
        bias = inputs[2]
        bias = topi.expand_dims(bias, axis=1, num_newaxis=2)
        out = topi.add(out, bias)
    return out
コード例 #3
0
def verify_expand_dims(in_shape, out_shape, axis, num_newaxis):
    A = tvm.placeholder(shape=in_shape, name="A")
    B = topi.expand_dims(A, axis, num_newaxis)

    def check_device(device):
        ctx = tvm.context(device, 0)
        if not ctx.exist:
            print("Skip because %s is not enabled" % device)
            return
        print("Running on target: %s" % device)
        with tvm.target.create(device):
            s = topi.generic.schedule_broadcast(B)
        foo = tvm.build(s, [A, B], device, name="expand_dims")
        data_npy = np.random.uniform(size=in_shape).astype(A.dtype)
        out_npy = data_npy.reshape(out_shape)
        data_nd = tvm.nd.array(data_npy, ctx)
        out_nd = tvm.nd.array(np.empty(out_shape).astype(B.dtype), ctx)
        foo(data_nd, out_nd)
        np.testing.assert_allclose(out_nd.asnumpy(), out_npy)

    for device in [
            "llvm", "nvptx", "cuda", "opencl", "metal", "rocm", "vulkan",
            "sdaccel"
    ]:
        check_device(device)
コード例 #4
0
def compute_conv2d(attrs, inputs, _):
    """Compute definition of conv2d"""
    padding = attrs.get_int_tuple("padding")
    strides = attrs.get_int_tuple("strides")
    dilation = attrs.get_int_tuple("dilation")
    groups = attrs.get_int("groups")
    channels = attrs.get_int("channels")
    layout = attrs["layout"]
    assert layout == "NCHW" or layout == "NHWC"
    (dilation_h, dilation_w) = dilation
    if dilation_h < 1 or dilation_w < 1:
        raise ValueError("dilation should be positive value")
    elif dilation == (1, 1):
        kernel = inputs[1]
    elif layout == "NCHW":
        kernel = topi.nn.dilate(inputs[1], [1, 1, dilation_h, dilation_w])
    else:  #layout == NHWC
        kernel = topi.nn.dilate(inputs[1], [1, dilation_h, dilation_w, 1])

    if groups == 1:
        out = topi.nn.conv2d(inputs[0], kernel, strides, padding, layout)
    elif groups == get_const_int(inputs[0].shape[1]) and groups == channels:
        out = topi.nn.depthwise_conv2d_nchw(inputs[0], kernel, strides,
                                            padding)
    else:
        raise ValueError("not support arbitrary group number for now")
    if attrs.get_bool("use_bias"):
        bias = inputs[2]
        expand_axis = 1 if layout == "NCHW" else 0
        bias = topi.expand_dims(bias, axis=expand_axis, num_newaxis=2)
        out = topi.broadcast_add(out, bias)
    return out
コード例 #5
0
ファイル: nn.py プロジェクト: zhiics/tvm
def compute_contrib_conv2d_winograd_without_weight_transform(attrs, inputs, _):
    """Compute definition of conv2d NCHWc"""
    padding = attrs.get_int_tuple("padding")
    strides = attrs.get_int_tuple("strides")
    dilation = attrs.get_int_tuple("dilation")
    groups = attrs.get_int("groups")
    layout = attrs.get_string("layout")
    out_dtype = attrs.get_string("out_dtype")
    target = attrs.get_string("target")
    tile_size = attrs.get_int("tile_size")
    out_dtype = inputs[0].dtype if out_dtype == "same" else out_dtype
    assert dilation == (1, 1), "Do not support dilate now"
    assert groups == 1, "Do not supoort arbitrary group number"

    with tvm.target.create(target):
        # pylint: disable=assignment-from-no-return
        out = topi.nn.conv2d_winograd_without_weight_transform(
            inputs[0], inputs[1], strides, padding, layout, out_dtype,
            tile_size)

        if attrs.get_bool("use_bias"):
            bias = inputs[2]
            bias = topi.expand_dims(bias, axis=1, num_newaxis=2)
            out = topi.add(out, bias)
        return out
コード例 #6
0
def compute_contrib_conv2d_NCHWc(attrs, inputs, _):
    """Compute definition of conv2d NCHWc"""
    padding = attrs.get_int_tuple("padding")
    strides = attrs.get_int_tuple("strides")
    dilation = attrs.get_int_tuple("dilation")
    kh, kw = attrs.get_int_tuple('kernel_size')
    groups = attrs.get_int("groups")
    channels = attrs.get_int("channels")
    layout = attrs.get_string("layout")
    out_layout = attrs.get_string("out_layout")
    assert dilation == (1, 1), "not support dilate now"
    with tvm.target.create(attrs.get_string("target")):
        if groups == 1:
            # pylint: disable=assignment-from-no-return
            out = topi.nn.conv2d_NCHWc(inputs[0], inputs[1], channels,
                                       (kh, kw), strides, padding, layout,
                                       out_layout)
            # pylint: enable=assignment-from-no-return
        else:
            raise ValueError("not support arbitrary group number > 1 for now")
        if attrs.get_bool("use_bias"):
            bias = inputs[2]
            bias = topi.expand_dims(bias, axis=1, num_newaxis=2)
            out = topi.add(out, bias)
        return out
コード例 #7
0
def compute_contrib_conv2d_NCHWc(attrs, inputs, _):
    """Compute definition of conv2d NCHWc"""
    padding = attrs.get_int_tuple("padding")
    strides = attrs.get_int_tuple("strides")
    dilation = attrs.get_int_tuple("dilation")
    out_channel = attrs.get_int("channels")
    groups = attrs.get_int("groups")
    layout = attrs.get_str("layout")
    out_layout = attrs.get_str("out_layout")
    out_dtype = attrs.get_str("out_dtype")
    out_dtype = inputs[0].dtype if out_dtype == "same" else out_dtype
    if layout == "NCHW":
        _, in_channel, _, _ = get_const_tuple(inputs[0].shape)
    else:
        _, in_channel_chunk, _, _, in_channel_block = get_const_tuple(inputs[0].shape)
        in_channel = in_channel_chunk * in_channel_block
    assert dilation == (1, 1), "not support dilate now"
    if groups == 1:
        # pylint: disable=assignment-from-no-return
        out = topi.nn.conv2d_NCHWc(inputs[0], inputs[1], strides, padding, dilation,
                                   layout, out_layout, out_dtype)
        # pylint: enable=assignment-from-no-return
    elif groups == in_channel and groups == out_channel:
        # pylint: disable=assignment-from-no-return
        out = topi.nn.depthwise_conv2d_NCHWc(inputs[0], inputs[1], strides, padding,
                                             dilation, layout, out_layout, out_dtype)
        # pylint: enable=assignment-from-no-return
    else:
        raise ValueError("not support arbitrary group number > 1 for now")
    if attrs.get_bool("use_bias"):
        bias = inputs[2]
        bias = topi.expand_dims(bias, axis=1, num_newaxis=2)
        out = topi.add(out, bias)
    return out
コード例 #8
0
def compute_conv2d(attrs, inputs, _):
    """Compute definition of conv2d"""
    padding = attrs.get_int_tuple("padding")
    strides = attrs.get_int_tuple("strides")
    dilation = attrs.get_int_tuple("dilation")
    groups = attrs.get_int("groups")
    channels = attrs.get_int("channels")
    layout = attrs["layout"]
    kernel_layout = attrs["kernel_layout"]
    out_dtype = attrs["out_dtype"]
    out_dtype = inputs[0].dtype if out_dtype == "same" else out_dtype
    assert layout in ["NCHW", "NHWC", "NCHW4c"]
    (dilation_h, dilation_w) = dilation
    if dilation_h < 1 or dilation_w < 1:
        raise ValueError("dilation should be positive value")
    elif layout == "NCHW4c" and (dilation_h > 1 or dilation_w > 1):
        raise ValueError("not support dilate now")
    elif dilation == (1, 1):
        kernel = inputs[1]
    elif layout == "NCHW":
        kernel = topi.nn.dilate(inputs[1], [1, 1, dilation_h, dilation_w])
    else:  #layout == NHWC
        kernel = topi.nn.dilate(inputs[1], [1, dilation_h, dilation_w, 1])

    with tvm.target.create(attrs.get_string("target")):
        if groups == 1:
            out = topi.nn.conv2d(inputs[0],
                                 kernel,
                                 strides,
                                 padding,
                                 layout,
                                 out_dtype=out_dtype)
        elif layout == "NCHW" and \
             groups == get_const_int(inputs[0].shape[1]) and \
             groups == channels:
            out = topi.nn.depthwise_conv2d_nchw(inputs[0],
                                                kernel,
                                                strides,
                                                padding,
                                                out_dtype=out_dtype)
        elif layout == "NHWC" and \
             kernel_layout == "HWOI" and \
             groups == get_const_int(inputs[0].shape[3]) and \
             groups == channels:
            out = topi.nn.depthwise_conv2d_nhwc(inputs[0],
                                                kernel,
                                                strides,
                                                padding,
                                                out_dtype=out_dtype)
        else:
            raise ValueError("not support arbitrary group number for now")

        if attrs.get_bool("use_bias"):
            bias = inputs[2]
            expand_axis = 1 if layout == "NCHW" else 0
            bias = topi.expand_dims(bias, axis=expand_axis, num_newaxis=2)
            out = topi.add(out, bias)
        return out
コード例 #9
0
ファイル: _nn.py プロジェクト: LANHUIYING/tvm
def compute_bias_add(attrs, inputs, out_dtype, target):
    """Compute definition of conv2d_transpose"""
    axis = attrs.axis
    bias = inputs[1]
    data_ndim = len(inputs[0].shape)
    if axis < 0:
        axis = axis + data_ndim
    num_newaxis = data_ndim - axis - 1

    if num_newaxis:
        bias = topi.expand_dims(bias, axis=1, num_newaxis=num_newaxis)
    return [topi.add(inputs[0], bias)]
コード例 #10
0
def compute_bias_add(attrs, inputs, out_dtype, target):
    """Compute definition of conv2d_transpose"""
    axis = attrs.axis
    bias = inputs[1]
    data_ndim = len(inputs[0].shape)
    if axis < 0:
        axis = axis + data_ndim
    num_newaxis = data_ndim - axis - 1

    if num_newaxis:
        bias = topi.expand_dims(bias, axis=1, num_newaxis=num_newaxis)
    return [topi.add(inputs[0], bias)]
コード例 #11
0
ファイル: nn.py プロジェクト: trevor-m/tvm
def compute_conv2d(attrs, inputs, _):
    """Compute definition of conv2d"""
    padding = attrs.get_int_tuple("padding")
    strides = attrs.get_int_tuple("strides")
    dilation = attrs.get_int_tuple("dilation")
    groups = attrs.get_int("groups")
    channels = attrs.get_int("channels")
    layout = attrs["layout"]
    kernel_layout = attrs["kernel_layout"]
    out_dtype = attrs["out_dtype"]
    out_dtype = inputs[0].dtype if out_dtype == "same" else out_dtype
    assert layout in ["NCHW", "NHWC", "NCHW4c"]
    (dilation_h, dilation_w) = dilation
    if dilation_h < 1 or dilation_w < 1:
        raise ValueError("dilation should be positive value")

    with tvm.target.create(attrs.get_str("target")):
        if groups == 1 and layout == 'NCHW4c' and inputs[0].dtype == 'int8':
            # pylint: disable=assignment-from-no-return
            out = topi.nn.conv2d(inputs[0], inputs[1], strides, padding,
                                 dilation, layout, out_dtype)
            # pylint: enable=assignment-from-no-return
        elif groups == 1:
            out = topi.nn.conv2d(inputs[0], inputs[1], strides, padding,
                                 dilation, layout, out_dtype)
        elif layout == "NCHW" and \
             groups == get_const_int(inputs[0].shape[1]) and \
             groups == channels:
            out = topi.nn.depthwise_conv2d_nchw(inputs[0], inputs[1], strides,
                                                padding, dilation, out_dtype)
        elif layout in ["NCHW", "NCHW4c"]:
            out = topi.nn.group_conv2d_nchw(inputs[0], inputs[1], strides,
                                            padding, dilation, groups,
                                            out_dtype)
        elif layout == "NHWC" and \
             kernel_layout == "HWOI" and \
             groups == get_const_int(inputs[0].shape[3]) and \
             groups == channels:
            out = topi.nn.depthwise_conv2d_nhwc(inputs[0], inputs[1], strides,
                                                padding, dilation, out_dtype)
        else:
            raise ValueError("not support arbitrary group number for now")

        if attrs.get_bool("use_bias"):
            bias = inputs[2]
            expand_axis = 1 if layout == "NCHW" else 0
            bias = topi.expand_dims(bias, axis=expand_axis, num_newaxis=2)
            out = topi.add(out, bias)
        return out
コード例 #12
0
ファイル: nn.py プロジェクト: bddppq/tvm
def compute_conv2d(attrs, inputs, _):
    """Compute definition of conv2d"""
    padding = attrs.get_int_tuple("padding")
    strides = attrs.get_int_tuple("strides")
    dilation = attrs.get_int_tuple("dilation")
    groups = attrs.get_int("groups")
    channels = attrs.get_int("channels")
    layout = attrs["layout"]
    kernel_layout = attrs["kernel_layout"]
    out_dtype = attrs["out_dtype"]
    out_dtype = inputs[0].dtype if out_dtype == "same" else out_dtype
    assert layout in ["NCHW", "NHWC", "NCHW4c"]
    (dilation_h, dilation_w) = dilation
    if dilation_h < 1 or dilation_w < 1:
        raise ValueError("dilation should be positive value")

    if groups == 1 and layout == 'NCHW4c' and inputs[0].dtype == 'int8':
        # pylint: disable=assignment-from-no-return
        out = topi.nn.conv2d(inputs[0], inputs[1], strides, padding,
                             dilation, layout, out_dtype=out_dtype)
        # pylint: enable=assignment-from-no-return
    elif groups == 1:
        out = topi.nn.conv2d(
            inputs[0], inputs[1], strides, padding, dilation, layout, out_dtype=out_dtype)
    elif layout == "NCHW" and \
         groups == get_const_int(inputs[0].shape[1]) and \
         groups == channels:
        out = topi.nn.depthwise_conv2d_nchw(
            inputs[0], inputs[1], strides, padding, dilation, out_dtype=out_dtype)
    elif layout in ["NCHW", "NCHW4c"]:
        out = topi.nn.group_conv2d_nchw(inputs[0], inputs[1], strides, padding, dilation, groups,
                                        out_dtype=out_dtype)
    elif layout == "NHWC" and \
         kernel_layout == "HWOI" and \
         groups == get_const_int(inputs[0].shape[3]) and \
         groups == channels:
        out = topi.nn.depthwise_conv2d_nhwc(
            inputs[0], inputs[1], strides, padding, dilation, out_dtype=out_dtype)
    else:
        raise ValueError("not support arbitrary group number for now")

    if attrs.get_bool("use_bias"):
        bias = inputs[2]
        expand_axis = 1 if layout in ["NCHW", "NCHW4c"] else 0
        bias = topi.expand_dims(bias, axis=expand_axis, num_newaxis=2)
        out = topi.add(out, bias)
    return out
コード例 #13
0
def compute_contrib_conv2d_NCHWc(attrs, inputs, _):
    """Compute definition of conv2d NCHWc"""
    padding = attrs.get_int_tuple("padding")
    strides = attrs.get_int_tuple("strides")
    dilation = attrs.get_int_tuple("dilation")
    kh, kw = attrs.get_int_tuple('kernel_size')
    groups = attrs.get_int("groups")
    channels = attrs.get_int("channels")
    assert dilation == (1, 1), "not support dilate now"
    if groups == 1:
        out = topi.nn.conv2d_NCHWc(inputs[0], inputs[1], channels, (kh, kw), strides, padding)
    else:
        raise ValueError("not support arbitrary group number > 1 for now")
    if attrs.get_bool("use_bias"):
        bias = inputs[2]
        bias = topi.expand_dims(bias, axis=1, num_newaxis=2)
        out = topi.broadcast_add(out, bias)
    return out
コード例 #14
0
ファイル: nn.py プロジェクト: masa-ito-fj/nnvm
def compute_conv2d_transpose(attrs, inputs, _):
    """Compute definition of conv2d_transpose"""
    padding = attrs.get_int_tuple("padding")
    strides = attrs.get_int_tuple("strides")
    dilation = attrs.get_int_tuple("dilation")
    groups = attrs.get_int("groups")
    layout = attrs["layout"]
    assert layout == "NCHW", "only support nchw for now"
    assert dilation == (1, 1), "not support dilate now"
    assert groups == 1, "only support groups == 1 for now"
    out = topi.nn.conv2d_transpose_nchw(inputs[0], inputs[1], strides, padding)
    if attrs.get_bool("use_bias"):
        bias = inputs[2]
        bias = topi.expand_dims(bias, axis=1, num_newaxis=2)
        out = topi.broadcast_add(out, bias)
    output_padding = attrs.get_int_tuple("output_padding")
    out = topi.nn.pad(out, \
        [0, 0, 0, 0], [0, 0, output_padding[0], output_padding[1]])
    return out
コード例 #15
0
def compute_conv2d_transpose(attrs, inputs, _):
    """Compute definition of conv2d_transpose"""
    padding = attrs.get_int_tuple("padding")
    strides = attrs.get_int_tuple("strides")
    dilation = attrs.get_int_tuple("dilation")
    groups = attrs.get_int("groups")
    layout = attrs["layout"]
    assert layout == "NCHW", "only support nchw for now"
    assert dilation == (1, 1), "not support dilate now"
    assert groups == 1, "only support groups == 1 for now"
    out = topi.nn.conv2d_transpose_nchw(inputs[0], inputs[1], strides, padding)
    if attrs.get_bool("use_bias"):
        bias = inputs[2]
        bias = topi.expand_dims(bias, axis=1, num_newaxis=2)
        out = topi.broadcast_add(out, bias)
    output_padding = attrs.get_int_tuple("output_padding")
    out = topi.nn.pad(out, \
        [0, 0, 0, 0], [0, 0, output_padding[0], output_padding[1]])
    return out
コード例 #16
0
ファイル: nn.py プロジェクト: fatu/nnvm
def compute_conv2d(attrs, inputs, _):
    """Compute definition of conv2d"""
    padding = attrs.get_int_tuple("padding")
    strides = attrs.get_int_tuple("strides")
    dilation = attrs.get_int_tuple("dilation")
    groups = attrs.get_int("groups")
    channels = attrs.get_int("channels")
    layout = attrs["layout"]
    assert layout == "NCHW", "only support nchw for now"
    assert dilation == (1, 1), "not support dilate now"
    if groups == 1:
        out = topi.nn.conv2d(inputs[0], inputs[1], strides, padding)
    elif groups == get_const_int(inputs[0].shape[1]) and groups == channels:
        out = topi.nn.depthwise_conv2d_nchw(inputs[0], inputs[1], strides, padding)
    else:
        raise ValueError("not support arbitrary group number for now")
    if attrs.get_bool("use_bias"):
        bias = inputs[2]
        bias = topi.expand_dims(bias, axis=1, num_newaxis=2)
        out = topi.broadcast_add(out, bias)
    return out
コード例 #17
0
def verify_expand_dims(in_shape, out_shape, axis, num_newaxis):
    A = tvm.placeholder(shape=in_shape, name="A")
    B = topi.expand_dims(A, axis, num_newaxis)
    s = topi.cuda.schedule_broadcast(B)

    def check_device(device):
        if not tvm.module.enabled(device):
            print("Skip because %s is not enabled" % device)
            return
        ctx = tvm.gpu(0) if device == "cuda" else tvm.cl(0)
        foo = tvm.build(s, [A, B], device, name="expand_dims")
        data_npy = np.random.uniform(size=in_shape).astype(A.dtype)
        out_npy = data_npy.reshape(out_shape)
        data_nd = tvm.nd.array(data_npy, ctx)
        out_nd = tvm.nd.array(np.empty(out_shape).astype(B.dtype), ctx)
        foo(data_nd, out_nd)
        np.testing.assert_allclose(out_nd.asnumpy(), out_npy)

    check_device("opencl")
    check_device("cuda")
    check_device("metal")
コード例 #18
0
ファイル: test_topi_transform.py プロジェクト: bddppq/tvm
def verify_expand_dims(in_shape, out_shape, axis, num_newaxis):
    A = tvm.placeholder(shape=in_shape, name="A")
    B = topi.expand_dims(A, axis, num_newaxis)
    def check_device(device):
        ctx = tvm.context(device, 0)
        if not ctx.exist:
            print("Skip because %s is not enabled" % device)
            return
        print("Running on target: %s" % device)
        with tvm.target.create(device):
            s = topi.generic.schedule_broadcast(B)
        foo = tvm.build(s, [A, B], device, name="expand_dims")
        data_npy = np.random.uniform(size=in_shape).astype(A.dtype)
        out_npy = data_npy.reshape(out_shape)
        data_nd = tvm.nd.array(data_npy, ctx)
        out_nd = tvm.nd.array(np.empty(out_shape).astype(B.dtype), ctx)
        foo(data_nd, out_nd)
        tvm.testing.assert_allclose(out_nd.asnumpy(), out_npy)

    for device in get_all_backend():
        check_device(device)
コード例 #19
0
def verify_expand_dims(in_shape, out_shape, axis, num_newaxis):
    A = te.placeholder(shape=in_shape, name="A")
    B = topi.expand_dims(A, axis, num_newaxis)
    def check_device(device):
        ctx = tvm.context(device, 0)
        if not ctx.exist:
            print("Skip because %s is not enabled" % device)
            return
        print("Running on target: %s" % device)
        with tvm.target.create(device):
            s = topi.testing.get_broadcast_schedule(device)(B)
        foo = tvm.build(s, [A, B], device, name="expand_dims")
        data_npy = np.random.uniform(size=in_shape).astype(A.dtype)
        out_npy = data_npy.reshape(out_shape)
        data_nd = tvm.nd.array(data_npy, ctx)
        out_nd = tvm.nd.array(np.empty(out_shape).astype(B.dtype), ctx)
        foo(data_nd, out_nd)
        tvm.testing.assert_allclose(out_nd.asnumpy(), out_npy)

    for device in get_all_backend():
        check_device(device)
コード例 #20
0
ファイル: nn.py プロジェクト: masa-ito-fj/nnvm
def compute_conv2d(attrs, inputs, _):
    """Compute definition of conv2d"""
    padding = attrs.get_int_tuple("padding")
    strides = attrs.get_int_tuple("strides")
    dilation = attrs.get_int_tuple("dilation")
    groups = attrs.get_int("groups")
    channels = attrs.get_int("channels")
    layout = attrs["layout"]
    assert layout == "NCHW", "only support nchw for now"
    assert dilation == (1, 1), "not support dilate now"
    if groups == 1:
        out = topi.nn.conv2d(inputs[0], inputs[1], strides, padding)
    elif groups == get_const_int(inputs[0].shape[1]) and groups == channels:
        out = topi.nn.depthwise_conv2d_nchw(inputs[0], inputs[1], strides, padding)
    else:
        raise ValueError("not support arbitrary group number for now")
    if attrs.get_bool("use_bias"):
        bias = inputs[2]
        bias = topi.expand_dims(bias, axis=1, num_newaxis=2)
        out = topi.broadcast_add(out, bias)
    return out
コード例 #21
0
ファイル: at_lib.py プロジェクト: zsangel378/mindspore
def Stack(device="llvm",
          lib_path="./",
          ndim=None,
          dtype=None,
          input_num=None,
          axis=None):
    '''
    stack
    Args:
        device:
        lib_path:
        ndim:
        dtype:
        input_num:
        axis:

    Returns:
    '''
    if axis > ndim:
        return
    shape = [tvm.var("n" + str(i)) for i in range(ndim)]
    shapes = [shape] * input_num
    in_tensor = [
        tvm.placeholder(shape, dtype=dtype, name='in_tensor%d' % i)
        for i, shape in enumerate(shapes)
    ]
    opname = "Stack_ndim%d_%s_input_num%d_axis%d" % (ndim, dtype, input_num,
                                                     axis)
    print(opname)

    input_tensor = [topi.expand_dims(ai, axis) for ai in in_tensor]
    out_tensor = topi.concatenate(tuple(input_tensor), axis=axis)
    tensor_list = in_tensor + [out_tensor]
    if ndim < 4:
        s = topi.generic.schedule_concatenate(out_tensor)
    else:
        s = tvm.create_schedule(out_tensor.op)
    Genlib(s, tensor_list, device, opname, lib_path)
コード例 #22
0
ファイル: nn.py プロジェクト: bddppq/tvm
def compute_contrib_conv2d_winograd_without_weight_transform(attrs, inputs, _):
    """Compute definition of conv2d NCHWc"""
    padding = attrs.get_int_tuple("padding")
    strides = attrs.get_int_tuple("strides")
    dilation = attrs.get_int_tuple("dilation")
    groups = attrs.get_int("groups")
    layout = attrs.get_str("layout")
    out_dtype = attrs.get_str("out_dtype")
    tile_size = attrs.get_int("tile_size")
    out_dtype = inputs[0].dtype if out_dtype == "same" else out_dtype
    assert dilation == (1, 1), "Do not support dilate now"
    assert groups == 1, "Do not supoort arbitrary group number"

    # pylint: disable=assignment-from-no-return
    out = topi.nn.conv2d_winograd_without_weight_transform(
        inputs[0], inputs[1], strides, padding, dilation, layout, out_dtype,
        tile_size)

    if attrs.get_bool("use_bias"):
        bias = inputs[2]
        bias = topi.expand_dims(bias, axis=1, num_newaxis=2)
        out = topi.add(out, bias)
    return out
コード例 #23
0
ファイル: at_lib.py プロジェクト: zsangel378/mindspore
def ExpandDims(device="llvm", lib_path="./", ndim=None, axis=None, dtype=None):
    '''
    expand dims
    Args:
        device:
        lib_path:
        ndim:
        axis:
        dtype:

    Returns:
    '''
    if axis > ndim:
        return
    shape = [tvm.var("n" + str(i)) for i in range(ndim)]
    opname = "ExpandDim_ndim%d_%s_axis%d" % (ndim, dtype, axis)
    print(opname)

    # define compute
    in_tensor = tvm.placeholder(shape, dtype=dtype, name='in_tensor')
    out_tensor = topi.expand_dims(in_tensor, axis=axis)
    tensor_list = [in_tensor, out_tensor]
    s = topi.generic.schedule_injective(out_tensor)
    Genlib(s, tensor_list, device, opname, lib_path)
コード例 #24
0
ファイル: transform.py プロジェクト: pharish93/FaceDetection
def compute_expand_dims(attrs, inputs, out_info):
    """Compute definition of expand_dims"""
    return topi.expand_dims(inputs[0],
                            attrs.get_int("axis"),
                            num_newaxis=attrs.get_int("num_newaxis"))
コード例 #25
0
    def _interpolate(im, im_shape, x, y, out_size, dtype):
        
        num_batch = im_shape[0]
        height = im_shape[1]
        width = im_shape[2]
        channels = im_shape[3]
            
        out_height = out_size[0]
        out_width = out_size[1]
        max_y = int(im_shape[1] - 1)
        max_x = int(im_shape[2] - 1)
               
        #[-1,1] -> [0, width-1]
        x = topi.multiply(topi.add(x, tvm.const(1, dtype=dtype)), width / tvm.const(2, dtype=dtype))
        y = topi.multiply(topi.add(y, tvm.const(1, dtype=dtype)), height / tvm.const(2, dtype=dtype))
            
        # do sampling
        dim3 = out_height * out_width * num_batch
            
        x0 = topi.cast(topi.floor(x), 'int32')  
        y0 = topi.cast(topi.floor(y), 'int32')
        x1 = topi.add(x0,tvm.const(1, dtype="int32"))
        y1 = topi.add(y0,tvm.const(1, dtype="int32"))

        x0 = topi.clip(x0, 0, max_x)
        x1 = topi.clip(x1, 0, max_x)
        y0 = topi.clip(y0, 0, max_y)
        y1 = topi.clip(y1, 0, max_y)

        dim2 = width
        dim1 = width * height

        base = tvm.compute((dim3,),lambda i:(i // (out_height * out_width)) * width * height, name = 'base')        
        base_y0 = topi.add(base, topi.multiply(y0, dim2))
        base_y1 = topi.add(base, topi.multiply(y1, dim2))

        idx_a = topi.add(base_y0, x0)
        idx_b = topi.add(base_y1, x0)
        idx_c = topi.add(base_y0, x1)
        idx_d = topi.add(base_y1, x1)
                
        im_flat = topi.reshape(im, (num_batch * height * width, channels))
        im_flat = topi.cast(im_flat, dtype)
        
        Ia = tvm.compute((dim3, channels),lambda i,j: im_flat[idx_a[i], j], name = 'Ia')       
        Ib = tvm.compute((dim3, channels),lambda i,j: im_flat[idx_b[i], j], name = 'Ib') 
        Ic = tvm.compute((dim3, channels),lambda i,j: im_flat[idx_c[i], j], name = 'Ic')
        Id = tvm.compute((dim3, channels),lambda i,j: im_flat[idx_d[i], j], name = 'Id')
            
        x0_f = topi.cast(x0, dtype)
        x1_f = topi.cast(x1, dtype)
        y0_f = topi.cast(y0, dtype)
        y1_f = topi.cast(y1, dtype)
        wa = topi.expand_dims(topi.multiply(topi.subtract(x1_f, x), topi.subtract(y1_f, y)), 1)
        wb = topi.expand_dims(topi.multiply(topi.subtract(x1_f, x), topi.subtract(y, y0_f)), 1)
        wc = topi.expand_dims(topi.multiply(topi.subtract(x, x0_f), topi.subtract(y1_f, y)), 1)
        wd = topi.expand_dims(topi.multiply(topi.subtract(x, x0_f), topi.subtract(y, y0_f)), 1)
 
        output = topi.add(topi.add(topi.add(topi.multiply(wa, Ia), topi.multiply(wb, Ib)),topi.multiply(wc, Ic)), topi.multiply(wd, Id))
        
        return output
コード例 #26
0
    def _interpolate(im, im_shape, x, y, out_size, dtype):

        num_batch = im_shape[0]
        height = im_shape[1]
        width = im_shape[2]
        channels = im_shape[3]

        out_height = out_size[0]
        out_width = out_size[1]
        max_y = int(im_shape[1] - 1)
        max_x = int(im_shape[2] - 1)

        # [-1,1] -> [0, width-1]
        x_temp = topi.multiply(topi.add(x, tvm.const(1, dtype=dtype)),
                               width / tvm.const(2, dtype=dtype))
        y_temp = topi.multiply(topi.add(y, tvm.const(1, dtype=dtype)),
                               height / tvm.const(2, dtype=dtype))

        # do sampling
        dim3 = out_height * out_width * num_batch

        x_zero = topi.cast(topi.floor(x_temp), 'int32')
        y_zero = topi.cast(topi.floor(y_temp), 'int32')
        x_one = topi.add(x_zero, tvm.const(1, dtype="int32"))
        y_one = topi.add(y_zero, tvm.const(1, dtype="int32"))

        x_zero = topi.clip(x_zero, 0, max_x)
        x_one = topi.clip(x_one, 0, max_x)
        y_zero = topi.clip(y_zero, 0, max_y)
        y_one = topi.clip(y_one, 0, max_y)

        dim2 = width

        base = tvm.compute((dim3, ),
                           lambda i:
                           (i // (out_height * out_width)) * width * height,
                           name='base')
        base_y0 = topi.add(base, topi.multiply(y_zero, dim2))
        base_y1 = topi.add(base, topi.multiply(y_one, dim2))

        idx_a = topi.add(base_y0, x_zero)
        idx_b = topi.add(base_y1, x_zero)
        idx_c = topi.add(base_y0, x_one)
        idx_d = topi.add(base_y1, x_one)

        im_flat = topi.reshape(im, (num_batch * height * width, channels))
        im_flat = topi.cast(im_flat, dtype)

        i_a = tvm.compute((dim3, channels),
                          lambda i, j: im_flat[idx_a[i], j],
                          name='Ia')
        i_b = tvm.compute((dim3, channels),
                          lambda i, j: im_flat[idx_b[i], j],
                          name='Ib')
        i_c = tvm.compute((dim3, channels),
                          lambda i, j: im_flat[idx_c[i], j],
                          name='Ic')
        i_d = tvm.compute((dim3, channels),
                          lambda i, j: im_flat[idx_d[i], j],
                          name='Id')

        x0_f = topi.cast(x_zero, dtype)
        x1_f = topi.cast(x_one, dtype)
        y0_f = topi.cast(y_zero, dtype)
        y1_f = topi.cast(y_zero, dtype)
        w_a = topi.expand_dims(
            topi.multiply(topi.subtract(x1_f, x_temp),
                          topi.subtract(y1_f, y_temp)), 1)
        w_b = topi.expand_dims(
            topi.multiply(topi.subtract(x1_f, x_temp),
                          topi.subtract(y_temp, y0_f)), 1)
        w_c = topi.expand_dims(
            topi.multiply(topi.subtract(x_temp, x0_f),
                          topi.subtract(y1_f, y_temp)), 1)
        w_d = topi.expand_dims(
            topi.multiply(topi.subtract(x_temp, x0_f),
                          topi.subtract(y_temp, y0_f)), 1)

        output = topi.add(
            topi.add(
                topi.add(topi.multiply(w_a, i_a), topi.multiply(w_b, i_b)),
                topi.multiply(w_c, i_c)), topi.multiply(w_d, i_d))

        return output