コード例 #1
0
def train_seg_coarse(mutual_helper, model_seg_coarse, train_loader_seg,
                     optimizer_seg, epoch):
    model_seg_coarse.train()
    loss_seg = Averagvalue()
    acc_seg = Averagvalue()
    data_iter_seg = mutual_helper.read_data(train_loader_seg)
    total_iter = len(train_loader_seg)
    for ii in range(total_iter):
        batch_gen_seg = next(data_iter_seg)
        labels = batch_gen_seg['image_segment']
        images = batch_gen_seg['image_patch']
        logits, _, _, _ = model_seg_coarse(images)
        probs = torch.sigmoid(logits)
        loss = mutual_helper.criterions['seg_loss'](probs, labels)
        acc = accuracy_check(probs, labels)
        optimizer_seg.zero_grad()
        loss.backward()
        optimizer_seg.step()
        loss_seg.update(loss.item())
        acc_seg.update(acc)
    empty_cache()
    print("[Epoch %d] [%s loss: %f] [%s acc: %f]" %
          (epoch, 'seg', loss_seg.avg, 'seg', acc_seg.avg))
    return {
        'train/seg_loss': loss_seg.avg,
        'train/seg_acc': acc_seg.avg,
    }
コード例 #2
0
def photo(bot, update):
	chat_id = update.message.chat_id
	update.message.reply_text('Принял! Скоро пришлю результат - \nэто займет несколько секунд')
	print("Got image from {}".format(chat_id))

	# получаем информацию о картинке
	image_info = update.message.photo[-1]
	image_file = bot.get_file(image_info)
	first_image_file[chat_id] = image_file

	content_image_stream = BytesIO()
	first_image_file[chat_id].download(out=content_image_stream)
	info[chat_id][1] = content_image_stream
	del first_image_file[chat_id]

	output = transfer(info[chat_id][1], info[chat_id][0])
	empty_cache() # torch.cuda.empty_cache()
	gc.collect()

	# теперь отправим назад фото
	output_stream = BytesIO()
	output.save(output_stream, format='PNG')
	output_stream.seek(0)
	update.message.reply_text('Держите')
	bot.send_photo(chat_id, photo=output_stream)
	update.message.reply_text('Ниче так вышло. Для повтора тыкните -> /start')
	
	return ConversationHandler.END
コード例 #3
0
ファイル: main.py プロジェクト: cialab/image2gene
def train(epoch):
    model.train()
    train_loss = 0.
    train_error = 0.
    for batch_idx, (data, label, n) in enumerate(train_loader):
        bag_label = label[0]
        if args.cuda:
            data, bag_label = data.cuda(), bag_label.cuda()
        data, bag_label = Variable(data), Variable(bag_label)

        # reset gradients
        optimizer.zero_grad()
        # calculate loss and metrics
        loss, _ = model.calculate_objective(data, bag_label)
        train_loss += loss.item()

        # backward pass
        loss.backward()
        # step
        optimizer.step()
        #meep
        empty_cache()

    # calculate loss and error for epoch
    train_loss /= len(train_loader)
    print('Epoch: {}, Loss: {:.4f}'.format(epoch, train_loss))
    if not args.train_only:
        test()
    if train_loss < args.cutoff:
        print([train_loss, args.cutoff])
        torch.save(model, args.model_prefix + '.model')
        exit(0)
コード例 #4
0
def test_cls(mutual_helper, model_seg_coarse, vali_loader_cls, epoch):
    mutual_helper.model.eval()
    loss_cls = Averagvalue()
    acc_cls = Averagvalue()
    with torch.no_grad():
        for i, batch in enumerate(vali_loader_cls):
            images_cls, _, labels_cls = mutual_helper.generate_batch(batch)
            images_cls_logits, backbone_out, _, _ = model_seg_coarse(
                images_cls)
            probs = torch.sigmoid(images_cls_logits)
            # image_grid = make_grid(images_cls, nrow=4, padding=2)
            # prob_grid = make_grid(probs, nrow=4, padding=2)
            # visualize(np.clip(np.transpose(image_grid.detach().cpu().numpy(), (1, 2, 0)) * std + mean, 0, 1),
            #           join(mutual_helper.config.submission_dir,
            #                'image_' + str(i) + '_batch_origin'))
            # visualize(np.clip(np.transpose(prob_grid.detach().cpu().numpy(), (1, 2, 0)), 0, 1),
            #           join(mutual_helper.config.submission_dir,
            #                'image_' + str(i) + '_batch_prob'))
            predictions_cls = mutual_helper.model(images_cls, probs,
                                                  backbone_out)
            loss = mutual_helper.criterions['cls_loss'](predictions_cls,
                                                        labels_cls)
            prob = F.softmax(predictions_cls, dim=1)
            _, equals = correct_predictions(prob, labels_cls)
            loss_cls.update(loss.item())
            acc_cls.update(equals / images_cls.size(0))
        empty_cache()
    info = 'Vali Epoch: [{0}/{1}]'.format(epoch, mutual_helper.config.epochs) + \
           ' Loss {loss:f} '.format(loss=loss_cls.avg) + \
           ' Acc {acc:f} '.format(acc=acc_cls.avg)
    print(info)
    return {
        'vali/cls_loss': loss_cls.avg,
        'vali/cls_acc': acc_cls.avg,
    }
コード例 #5
0
def _measure_performance(g, mem):
    tm = TicToc()
    tt = 0
    f = 1
    if g == -1:
        dev = torch.device('cpu')
    else:
        dev = torch.device('cuda:%s' % g)
    dtt = torch.double

    a = torch.eye(1024, 1024, dtype=dtt, device=dev)
    a.addmm_(a, a)
    if g >= 0:
        tcd.synchronize(device=dev)

    while tt < 1.0 and mem > 8.0 * (f * 2048.0) ** 2:
        tm.tic()
        a = torch.eye(f * 2048, f * 2048, dtype=dtt, device=dev)
        a.addmm_(a, a)
        if g >= 0:
            tcd.synchronize(device=dev)
        tt = tm.toc_val()
        f *= 2

    print('%s:%s - speed: %s' % (dev.type, dev.index, (float(f) ** 3) / tt))

    del a
    if g >= 0:
        tcd.synchronize(device=dev)
    tcd.empty_cache()

    return (float(f) ** 3) / tt
コード例 #6
0
ファイル: mri_table.py プロジェクト: erikhuck/DataClean
def handle():
    """Main method of module"""

    cohort: str = argv[-1]
    img_paths_by_idx: dict = get_img_paths_by_idx(mri_dir=cohort)
    ptid_to_slice_sequence: dict = {}

    for mri_idx, img_paths in tqdm(img_paths_by_idx.items()):
        ptid_to_path: dict = get_ptid_to_path(img_paths=img_paths)

        # Load the trained model for the given MRI slice index
        model: Module = get_autoencoder(mri_idx=mri_idx, mri_dir=cohort)
        empty_cache()

        with no_grad():
            ptid_to_encoded_img: dict = get_ptid_to_encoded_img(
                ptid_to_path=ptid_to_path, encoder=model.encoder)

        for ptid, encoded_img in ptid_to_encoded_img.items():
            if ptid not in ptid_to_slice_sequence:
                ptid_to_slice_sequence[ptid] = {mri_idx: encoded_img}
            else:
                slice_sequence: dict = ptid_to_slice_sequence[ptid]
                slice_sequence[mri_idx] = encoded_img

    save_data_set(ptid_to_slice_sequence=ptid_to_slice_sequence, cohort=cohort)
コード例 #7
0
ファイル: translation.py プロジェクト: torchkge-team/torchkge
    def evaluate_projections(self):
        """Link prediction evaluation helper function. Project all entities
        according to each relation. Calling this method at the beginning of
        link prediction makes the process faster by computing projections only
        once.

        """
        if self.evaluated_projections:
            return

        for i in tqdm(range(self.n_ent),
                      unit='entities',
                      desc='Projecting entities'):

            norm_vect = self.norm_vect.weight.data.view(
                self.n_rel, self.emb_dim)
            mask = tensor([i], device=norm_vect.device).long()

            if norm_vect.is_cuda:
                empty_cache()

            ent = self.ent_emb(mask)
            norm_components = (ent.view(1, -1) * norm_vect).sum(dim=1)
            self.projected_entities[:, i, :] = (
                ent.view(1, -1) - norm_components.view(-1, 1) * norm_vect)

            del norm_components

        self.evaluated_projections = True
    def eval_on_intern_metrs(self, data_source, **kwargs):
        """Computes the average over data points metrics."""
        empty_cache()
        logger.info("Evaluation data source: %s" % data_source)
        total_metrs = OrderedDict()
        total_dp = 0
        total_batches = 0
        total_revs = 0
        start = time()
        for batch in self.val_data_pipeline.iter(**data_source):
            metrs = self.imodel.eval(batch=batch, **kwargs)
            total_revs += len(batch[ModelF.REV])
            for k, v in metrs.items():
                if k not in total_metrs:
                    total_metrs[k] = 0.
                total_metrs[k] += v * len(batch)  # rescaling back
            total_dp += len(batch)
            total_batches += 1

        logger.info("Evaluation time elapsed: %.2f (s)." % (time() - start))
        logger.info("Total reviews: %d." % total_revs)

        # compute the actual average over data-points
        f_res = OrderedDict()
        for k, v in total_metrs.items():
            f_res[k] = v / float(total_dp)

        return f_res
コード例 #9
0
def get_scores(model_names: List[str], datasets: List[List[Tweet]],
               batch_size: int, device: str, model_dir: str,
               data_tag: str) -> List[Tensor]:
    """
       :returns num_dataset tensors of shape B x M x Q
    """
    outs = []
    for name in model_names:
        this_model_outs = []
        model = make_model(name, True).to(device)
        model.load_state_dict(
            load('/'.join([model_dir, f'{name}-{data_tag}',
                           'model.p']))['model_state_dict'])
        for dataset in datasets:
            this_dataset_outs = []
            nbatches = ceil(len(dataset) / batch_size)
            for batch_idx in range(nbatches):
                start, end = batch_idx * batch_size, min(
                    len(dataset), (batch_idx + 1) * batch_size)
                this_dataset_outs.append(
                    model.predict_scores(dataset[start:end]).cpu())
            this_model_outs.append(cat(this_dataset_outs, dim=0))
        outs.append(this_model_outs)
        empty_cache()
    return [stack(x, dim=1) for x in zip(*outs)]
コード例 #10
0
    def train(self):
        
        n_epoch = self.configer.n_epoch - self.cur_epoch
        print("Start training! current epoch: {}, remain epoch: {}".format(self.cur_epoch, n_epoch))

        bar = ProcessBar(n_epoch)

        for i_epoch in range(n_epoch):

            if self.configer.cuda and cuda.is_available(): cuda.empty_cache()

            self.cur_epoch += 1
            bar.step(self.cur_epoch)

            self.lr_scheduler.step(self.cur_epoch)
            cur_lr = self.lr_scheduler.get_lr()[-1]
            self.writer.add_scalar('{}/lr'.format(self.net._get_name()), cur_lr, self.cur_epoch)

            loss_train = self.train_epoch()
            # print("----------------------------------------------------------------------------------------------")
            loss_valid = self.valid_epoch()
            # print("----------------------------------------------------------------------------------------------")

            self.writer.add_scalars('{}/loss'.format(self.net._get_name()), 
                                {'train': loss_train, 'valid': loss_valid}, self.cur_epoch)

            # print_log = "{} || Elapsed: {:.4f}h || Epoch: [{:3d}]/[{:3d}] || lr: {:.6f},| train loss: {:4.4f}, valid loss: {:4.4f}".\
            #         format(getTime(), self.elapsed_time/3600, self.cur_epoch, self.configer.n_epoch, 
            #             cur_lr, loss_train, loss_valid)
            # print(print_log)
            
            if loss_valid < self.valid_loss:
                self.valid_loss = loss_valid
                self.save_checkpoint()
コード例 #11
0
def eval(model, criterion, loader):
    global force_cuda

    model.eval()

    loss = 0.0
    acc = 0.0
    total = 0

    for i, data in enumerate(loader):
        with torch.no_grad():
            inputs, labels = data
            if force_cuda and cuda.is_available():
                inputs, labels = inputs.cuda(), labels.cuda()

            outputs = model(inputs)
            _, prediction = torch.max(outputs.data, 1)
            loss = criterion(outputs, labels)

            loss += loss.data.item()
            acc += torch.sum(prediction == labels.data).item()
            total += labels.size(0)

            del inputs, labels, outputs, prediction
            cuda.empty_cache()

    avg_loss = loss / total
    avg_acc = acc / total

    return avg_loss, avg_acc
コード例 #12
0
 def eval(self, cur_epoch: int, max_epoch: int) -> [float, float]:
     """
     云端测试
     :param cur_epoch: 当前epoch
     :param max_epoch: 最大epoch
     :return: 损失,准确率
     """
     self.model.eval()
     criterion = CrossEntropyLoss()
     loss = 0
     correct = 0
     pbar = tqdm(range(len(self.test_loader)))
     pbar.set_description('Eval {}/{}'.format(cur_epoch, max_epoch))
     if self.cfg.SOLVER.CUDA:
         self.model.cuda()
     for iter_, (_, (inputs, targets)) in enumerate(zip(pbar, self.test_loader)):
         if self.cfg.SOLVER.CUDA:
             inputs, targets = inputs.cuda(), targets.cuda()
         outputs = self.model(inputs)
         batch_l = criterion(outputs, targets)
         loss += float(batch_l)
         _, predicted = torch.max(outputs.data, 1)
         correct += int(predicted.eq(targets).sum())
         acc = correct / ((iter_ + 1) * self.test_batch_size)
         pbar.set_postfix({
             'loss': '{:.8f}'.format(loss / ((iter_ + 1) * self.test_batch_size)),
             'acc': '{:.8f}'.format(acc)
         })
     self.model.cpu()
     acc = correct / (len(self.test_loader) * self.test_batch_size)
     self.logger.logger.info('{} Eval {}/{}\tloss: {}\tacc: {}'.format(
         datetime.now().strftime('%Y-%m-%d %H:%M:%S'), cur_epoch, max_epoch, loss, acc))
     cuda.empty_cache()
     return loss, acc
コード例 #13
0
    def _filter_gsw_sentences(self, sentences):
        """Filter out all sentences that are not detected as Swiss-German
        """
        # Predict Swiss-German
        sentences_list = [sentence[1] for sentence in sentences]
        predictions = []
        # separate in batches to avoid cuda out of memory error
        for i in tqdm(range(math.ceil(len(sentences_list) / 100))):
            left = i * 100
            right = (i + 1) * 100
            batch = sentences_list[left:right]
            if len(batch) > 0:
                predictions.extend(self.lid.predict_label(batch))
        if len(sentences_list) != len(predictions):
            raise Exception("predictions and sentences_list must have the " +
                            "same length")

        # Create the gsw_tweet object for each prediction that exceeds a
        # threshold
        filtered = []
        for i in range(len(sentences)):
            prediction = float(predictions[i])
            if prediction >= self.config["lid_threshold"]:
                filtered.append((sentences[i][0], sentences[i][1], prediction))

        del (predictions)
        gc.collect()
        cuda.empty_cache()
        return filtered
コード例 #14
0
def batch_and_write():
    #get the input text
    src_text = [None] * batch_size
    for i in range(0, batch_size):
        src_text[i] = data_file.readline()
        if src_text[i][
                0] == "-":  #this is a little bit of data cleaning for a common issue in open subtitles
            src_text[i] = src_text[i][2:]
    #batch
    batch = tr_az_tokenizer.prepare_seq2seq_batch(
        src_texts=src_text, return_tensors="pt").to('cuda')
    #generate
    gen = tr_az_model.generate(**batch).to('cuda')
    #decode
    words = tr_az_tokenizer.batch_decode(gen, skip_special_tokens=True)
    #write the output files
    for i in range(0, batch_size):
        tr_file_out.write(src_text[i])
        az_file_out.write(words[i] + "\n")
    #clear cuda cache
    del src_text
    del batch
    del gen
    del words
    cuda.empty_cache()
コード例 #15
0
ファイル: translation.py プロジェクト: torchkge-team/torchkge
    def evaluate_projectionss(self):
        """Link prediction evaluation helper function. Project all entities
        according to each relation. Calling this method at the beginning of
        link prediction makes the process faster by computing projections only
        once.

        """
        if self.evaluated_projections:
            return

        for i in tqdm(range(self.n_ent),
                      unit='entities',
                      desc='Projecting entities'):
            projection_matrices = self.proj_mat.weight.data
            projection_matrices = projection_matrices.view(
                self.n_rel, self.rel_emb_dim, self.ent_emb_dim)

            mask = tensor([i], device=projection_matrices.device).long()

            if projection_matrices.is_cuda:
                empty_cache()

            ent = self.ent_emb(mask)
            proj_ent = matmul(projection_matrices, ent.view(self.ent_emb_dim))
            proj_ent = proj_ent.view(self.n_rel, self.rel_emb_dim, 1)
            self.projected_entities[:, i, :] = proj_ent.view(
                self.n_rel, self.rel_emb_dim)

            del proj_ent

        self.evaluated_projections = True
    def train(self, data_source, logging_steps=10, **kwargs):
        """
        Performs a single epoch training on the passed `data_source`.

        :param data_source: self-explanatory.
        :param logging_steps: how often to log training produced batch metrics.
        """
        empty_cache()
        logger.info("Training data source: %s" % data_source)
        total_batches = 0
        total_revs = 0
        start = time()

        data_chunk_iter = self.train_data_pipeline.iter(**data_source)

        for indx, batch in enumerate(data_chunk_iter, 1):
            c_lambd = self.c_kl_ann(increment_indx=True)
            z_lambd = self.z_kl_ann(increment_indx=True)
            metrics = self.imodel.train(batch,
                                        c_lambd=c_lambd,
                                        z_lambd=z_lambd)
            total_revs += len(batch[ModelF.REV])
            if indx % logging_steps == 0:
                mess = metrics_to_str(metrics, prefix="Chunk # %d" % indx)
                logger.info(mess)
            total_batches += 1

        logger.info("Epoch training time elapsed: %.2f (s)." %
                    (time() - start))
        logger.info("Total reviews: %d." % total_revs)
コード例 #17
0
ファイル: performance.py プロジェクト: brennanmcfarland/arc23
def adapt_checkpointing(checkpoint_func: Callable[[Module, int], Module],
                        run_func: Callable[[Module],
                                           Any], module: Module) -> Module:
    # TODO: set a max before hard failure?
    # I'd use recursion here, but it would make it very easy to blow up the stack by accident
    num_checkpoints = 0
    while True:
        try:
            # create checkpoints and run the model
            checkpointed = checkpoint_func(module, num_checkpoints)
            run_func(checkpointed)
            print('sufficient memory for ', num_checkpoints, ' checkpoints')
            # TODO: need to adapt this check to work for checkpoint funcs that don't just operate on highest submodules
            if num_checkpoints > len(list(module.children()))**.5:
                print(
                    'WARNING: number of checkpoints above sqrt of layers, likely to incur high performance cost'
                )
            return checkpointed
        except RuntimeError as err:
            print(err)
            if 'out of memory' in str(err):
                print('insufficient memory for ', num_checkpoints,
                      ' checkpoints, retrying with ', num_checkpoints + 1)

                # delete any params handing around and clear the cache to have a clean slate to try again
                for param in module.parameters():
                    if param.grad is not None:
                        del param.grad
                cuda.empty_cache()
                num_checkpoints += 1
コード例 #18
0
def integratedForward_cls(model,
                          sps,
                          batchSize,
                          nClasses,
                          device='cpu',
                          count_votes=False):
    N = sps.size(0)
    feats = torch.empty(N, nClasses)
    model = model.to(device)

    with torch.no_grad():
        baseInx = 0
        while baseInx < N:
            cuda.empty_cache()
            endInx = min(baseInx + batchSize, N)
            y = model.classifier(
                sps[baseInx:endInx, :].to(device)).detach().to('cpu')
            feats[baseInx:endInx, :] = y
            baseInx = endInx

    if count_votes:
        maxV, _ = torch.max(feats, dim=1, keepdim=True)
        feat = torch.sum(feats == maxV, dim=0, keepdim=True)
    else:
        feat = torch.mean(feats, dim=0, keepdim=True)

    return feat, feats
コード例 #19
0
    def train(self, lr=0.1, batch_size=0, epoch_num=1) -> [dict, float, float]:
        """
        完成一次训练
        :param lr:
        :param batch_size:
        :param epoch_num:
        :return: 模型参数,损失,训练集准确率
        """
        if len(self.sample_set) == 0:
            return None, 0, 0

        self.model.train()
        if self.cfg.SOLVER.CUDA:
            self.model.cuda()
        train_loader = self._init_train_loader(batch_size)
        optimizer = torch.optim.SGD(self.model.parameters(), lr, momentum=0.5)
        train_loss = 0
        train_acc = 0

        for epoch in range(epoch_num):
            loss, acc = self._train_one_epoch(train_loader, optimizer)
            self.logger.logger.info('{} Train\tloss: {}\tacc: {}'.format(
                self, loss, acc))
            train_loss += loss
            train_acc += acc
            cuda.empty_cache()
        self.model.cpu()
        model_params = copy.deepcopy(self.model.state_dict())
        train_loss /= epoch_num
        train_acc /= epoch_num
        cuda.empty_cache()
        return model_params, train_loss, train_acc
コード例 #20
0
def train_seg(mutual_helper, model_seg_coarse, model_cls, train_loader_seg,
              optimizer_seg, epoch):
    mutual_helper.model.train()
    loss_seg = Averagvalue()
    acc_seg = Averagvalue()
    optimizer_seg.zero_grad()
    batch_num = int(
        np.ceil(
            len(train_loader_seg.dataset) /
            float(mutual_helper.config.train_seg_batch_size)))
    for ee in range(1):
        for i, batch in enumerate(train_loader_seg):
            images, labels, _ = mutual_helper.generate_batch(batch)
            with torch.no_grad():
                images_cls_logits, seg_backbone_out, _, _ = model_seg_coarse(
                    images)
                probs_cls = torch.sigmoid(images_cls_logits)
                cls_features_out = model_cls.get_backbone_out(
                    images, probs_cls, seg_backbone_out)
            # cls_features_out = None
            # _, _, cam = mutual_helper.generate_cam_ex_batch(model_cls, images.detach(), probs_cls, seg_backbone_out)
            # grid = make_grid(images, nrow=4, padding=2)
            # grid = np.transpose(grid.detach().cpu().numpy(), (1, 2, 0)) * std + mean
            # save_img = np.clip(grid * 255 + 0.5, 0, 255)
            # visualize(save_img,
            #           join(mutual_helper.config.tmp_dir,
            #                str(i) + "_images"))
            # grid = make_grid(labels, nrow=4, padding=2)
            # visualize(np.transpose(grid.detach().cpu().numpy(), (1, 2, 0)),
            #           join(mutual_helper.config.tmp_dir,
            #                str(i) + "_probs"))
            # grid = make_grid(probs_cls, nrow=4, padding=2)
            # visualize(np.transpose(grid.detach().cpu().numpy(), (1, 2, 0)),
            #           join(mutual_helper.config.tmp_dir,
            #                str(i) + "_label"))
            cam = None
            logits = mutual_helper.model(images,
                                         cam,
                                         cls_features_out,
                                         dua=False)
            probs = torch.sigmoid(logits)
            loss = mutual_helper.criterions['seg_loss'](probs, labels)
            acc = accuracy_check(probs, labels)
            loss.backward()
            loss_seg.update(loss.item())
            acc_seg.update(acc)
            if (
                    i + 1
            ) % mutual_helper.config.update_every == 0 or i == batch_num - 1:
                clip_grad_norm_(filter(lambda p: p.requires_grad, mutual_helper.model.parameters()), \
                                max_norm=mutual_helper.config.clip)
                optimizer_seg.step()
                optimizer_seg.zero_grad()
        empty_cache()
    print("[Epoch %d] [%s loss: %f] [%s acc: %f]" %
          (epoch, 'seg', loss_seg.avg, 'seg', acc_seg.avg))
    return {
        'train/seg_loss': loss_seg.avg,
        'train/seg_acc': acc_seg.avg,
    }
コード例 #21
0
def integratedForward(model, sps, batchSize, nClasses, device='cpu', voteMethod='avg_softmax'):
    N = sps.size(0)
    feats = torch.empty(N, nClasses)
    model = model.to(device)

    with torch.no_grad():
        baseInx = 0
        while baseInx < N:
            cuda.empty_cache()
            endInx = min(baseInx + batchSize, N)
            y = model(sps[baseInx:endInx, :].to(device)).detach().to('cpu')
            feats[baseInx:endInx, :] = y
            baseInx = endInx

    if voteMethod == 'avg_feat':
        feat = torch.mean(feats, dim=0, keepdim=True)
    elif voteMethod == 'most_vote':
        maxV, _ = torch.max(feats, dim=1, keepdim=True)
        feat = torch.sum(feats == maxV, dim=0, keepdim=True)
    elif voteMethod == 'weighted_feat':
        feat = torch.mean(feats, dim=0, keepdim=True)
        maxV, _ = torch.max(feats, dim=1, keepdim=True)
        feat = feat * torch.sum(feats == maxV, dim=0, keepdim=True).float()
    elif voteMethod == 'avg_softmax':
        feats = nn.functional.softmax(feats, dim=1)
        feat = torch.mean(feats, dim=0, keepdim=True)
    else:
        # default method: avg_softmax
        feats = nn.functional.softmax(feats, dim=1)
        feat = torch.mean(feats, dim=0, keepdim=True)

    return feat, feats
コード例 #22
0
 def get_cuda_memory(self):
     # type: () -> str
     # Convert from B to MiB
     if cuda.is_available():
         cuda.empty_cache()
         return "{:.0f} MiB".format(
             cuda.max_memory_cached(device=self._device) // 1024**2)
     return "??? MiB"
コード例 #23
0
def benchmark_stvae(dataset, log_name, cfg, **kwargs):
    ds = dataset
    n_genes = min(ds.X.shape[1], cfg.n_genes)
    expression = np.log(ds.X + 1.)
    scvai_genes, scvai_batches_ind, scvai_labels_ind = get_high_variance_genes(
        expression, ds.batch_indices, ds.labels, n_genes=n_genes, argmax=False)

    cfg.count_classes = np.unique(ds.batch_indices).shape[0]
    cfg.count_labels = np.unique(ds.labels).shape[0]
    cfg.input_dim = int(scvai_genes.shape[1])

    data = load_datasets(cfg, True, True,
                         (scvai_genes, scvai_batches_ind, scvai_labels_ind))
    dataloader_train = data[0]
    dataloader_val = data[1]
    dataloader_test = data[2]
    annot_train = data[3]
    annot_test = data[4]

    styletransfer_test_expr = annot_test.dataset.tensors[0].cpu().numpy()
    styletransfer_test_class = annot_test.dataset.tensors[1].cpu().numpy()
    styletransfer_test_celltype = annot_test.dataset.tensors[2].cpu().numpy()

    model = None
    disc = None

    print('Training...')
    model, disc = train(dataloader_train, dataloader_val, cfg, model, disc)

    print('Tests...')
    print('Dataset:', log_name)
    cfg.classifier_epochs = 1
    res = test(cfg,
               model,
               disc,
               annot_train,
               styletransfer_test_expr,
               styletransfer_test_class,
               styletransfer_test_celltype,
               dataset_name=log_name)

    (Path(cfg.metrics_dir) / 'stVAE').mkdir(parents=True, exist_ok=True)
    with open(Path(cfg.metrics_dir) / 'stVAE/' / (log_name + '.json'),
              'w') as file:
        json.dump(res, file, indent=4)

    del ds
    del model, disc
    del styletransfer_test_expr
    del styletransfer_test_class
    del styletransfer_test_celltype
    del data
    del dataloader_train, dataloader_val, dataloader_test
    del annot_train, annot_test
    del scvai_genes, scvai_batches_ind, scvai_labels_ind
    gc.collect()
    cuda.empty_cache()
コード例 #24
0
def train(model, train_loader, optimizer, epoch):
    model.train()
    if mode == 'gpu':
        dtype_float = torch.cuda.FloatTensor
    else:
        dtype_float = torch.FloatTensor
    global net_vis
    end = time.time()
    pend = time.time()
    batch_time = Averagvalue()
    printfreq_time = Averagvalue()
    losses = Averagvalue()
    acc = Averagvalue()
    optimizer.zero_grad()
    for i, (image, label) in enumerate(train_loader):
        # if (i + 1) % (int(len(train_loader) / 5)) == 0:
        #     visualize(group_images(image.cpu().detach().numpy(), 10),
        #               TMP_DIR + "all_train_" + str(i)+"_A")  # .show()
        #     visualize(group_images(label, 10),
        #               TMP_DIR + "all_train_" + str(i)+"_B")
        image = dtype_float(to_cuda(image.float(), mode)).requires_grad_(False)
        label = to_cuda(label, mode).requires_grad_(False)
        pre_label = model(image)
        if fcn:
            # if (i + 1) % (int(len(train_loader) / 5)) == 0:
            #     visualize(group_images(pre_label.cpu().detach().numpy(), 10),
            #               TMP_DIR + "all_train_" + str(i)+"_C")
            loss = BCELoss(pre_label, label)
            prec1 = accuracy_check(pre_label, label)
            acc.update(prec1, 1)
        else:
            loss = CELoss(pre_label, label)
            prec1 = accuracy(pre_label, label)
            acc.update(prec1[0].item(), image.size(0))
        losses.update(loss.item(), image.size(0))
        batch_time.update(time.time() - end)
        end = time.time()
        if (i + 1) % (int(len(train_loader) / printfreq)) == 0:
            printfreq_time.update(time.time() - pend)
            pend = time.time()
            info = 'Epoch: [{0}/{1}][{2}/{3}] '.format(epoch, N_epochs, i, len(train_loader)) + \
                   'printfreq time {printfreq_time.val:.3f} (avg:{printfreq_time.avg:.3f}) '.format(
                       printfreq_time=printfreq_time)
            # info = 'Epoch: [{0}/{1}][{2}/{3}] '.format(epoch, N_epochs, i, len(train_loader)) + \
            #        'Batch time {batch_time.val:.3f} (avg:{batch_time.avg:.3f}) '.format(batch_time=batch_time) + \
            #        'printfreq time {printfreq_time.val:.3f} (avg:{printfreq_time.avg:.3f}) '.format(
            #            printfreq_time=printfreq_time) + \
            #        'Acc {acc.val:f} (avg:{acc.avg:f}) '.format(acc=acc) + \
            #        'Loss {loss.val:f} (avg:{loss.avg:f}) '.format(loss=losses)
            print(info)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
    empty_cache()
    return losses.avg, acc.avg
コード例 #25
0
def test_eval(benchmarks,
              model_name,
              opt_method,
              GDR=False,
              emb_dim=100,
              eval_b_size=256):

    ent_dim = emb_dim
    rel_dim = emb_dim

    model_save_path = './checkpoint/' + benchmarks + '_' + model_name + '_' + opt_method + '.ckpt'  # 保存最佳hits k (ent)模型
    device = 'cuda:0' if cuda.is_available() else 'cpu'

    # Load dataset
    module = getattr(import_module('torchkge.models'), model_name + 'Model')
    load_data = getattr(import_module('torchkge.utils.datasets'),
                        'load_' + benchmarks)

    print('Loading data...')
    kg_train, kg_val, kg_test = load_data(GDR=GDR)
    print(
        f'Train set: {kg_train.n_ent} entities, {kg_train.n_rel} relations, {kg_train.n_facts} triplets.'
    )
    print(
        f'Valid set: {kg_val.n_facts} triplets, Test set: {kg_test.n_facts} triplets.'
    )

    # # Define the model and criterion
    if 'TransE' in model_name:
        model = module(emb_dim,
                       kg_train.n_ent,
                       kg_train.n_rel,
                       dissimilarity_type='L2')
    else:
        model = module(ent_dim, rel_dim, kg_train.n_ent, kg_train.n_rel)
    # Move everything to CUDA if available
    if device == 'cuda:0':
        cuda.empty_cache()
        model.to(device)

    if os.path.exists(model_save_path):  # 存在则加载模型 进行测试
        load_ckpt(model_save_path, model, train=False)
        print(f'loading ckpt successful, start evaluate on test data...')
        print(model)
        model.eval()
        lp_evaluator = LinkPredictionEvaluator(model, kg_test)
        lp_evaluator.evaluate(eval_b_size, verbose=True)
        lp_evaluator.print_results()
        rp_evaluator = RelationPredictionEvaluator(model, kg_test)
        rp_evaluator.evaluate(eval_b_size, verbose=True)
        rp_evaluator.print_results()
    else:
        print('No pretrain model found!')
コード例 #26
0
def crabnet_mae(parameterization,
                train_val_df,
                n_splits=5,
                kf=None,
                verbose=False):
    """Compute the mean absolute error of a CrabNet model.
    
    Assumes that `train_df` and `val_df` are predefined.

    Parameters
    ----------
    parameterization : dict
        Dictionary of the parameters passed to `get_model()` after some slight
        modification. 

    Returns
    -------
    results: dict
        Dictionary of `{"rmse": rmse}` where `rmse` is the root-mean-square error of the
        CrabNet model.
    """
    parameterization = correct_parameterization(parameterization,
                                                verbose=verbose)

    if kf is None:
        kf = KFold(n_splits=n_splits, shuffle=True, random_state=18012019)

    mae = 0.0
    for train_index, val_index in kf.split(train_val_df):
        train_df, val_df = (
            train_val_df.loc[train_index],
            train_val_df.loc[val_index],
        )
        crabnet_model = get_model(mat_prop="expt_gap",
                                  train_df=train_df,
                                  learningcurve=False,
                                  force_cpu=False,
                                  verbose=verbose,
                                  **parameterization)
        val_true, val_pred, val_formulas, val_sigma = crabnet_model.predict(
            val_df)
        # rmse = mean_squared_error(val_true, val_pred, squared=False)
        val_pred = np.nan_to_num(val_pred)
        mae = mae + mean_absolute_error(val_true, val_pred)

        # deallocate CUDA memory https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/28
        del crabnet_model
        gc.collect()
        empty_cache()
    mae = mae / n_splits
    return mae
コード例 #27
0
 def summ_eval(self, out_dir_path, data_source, **kwargs):
     """Runs evaluation of summaries."""
     assert self.eval_pipeline is not None
     empty_cache()
     summ_gen_func = partial(self.summ_gen_wrapper, **kwargs)
     output_fn = "%s_eval.json" % get_file_name(data_source['data_path'])
     out_file_path = comb_paths(out_dir_path, output_fn)
     logger.info("Performing summary evaluation on %s." % data_source)
     eval_proc = SummEvalProc(self.eval_pipeline,
                              summs_gen_func=summ_gen_func,
                              rev_formatter_func=self.gen_seq_postproc,
                              summ_formatter_func=self.summ_postproc,
                              analytics_func=self.seq_analytics)
     eval_proc.eval(data_source, out_file_path=out_file_path)
コード例 #28
0
def train(model, train_loader, test_loader, cfg):

    current_iter = model.epoch
    max_iter = cfg.SOLVER.MAX_ITER

    optimizer = make_optimizer(cfg, model)
    scheduler = make_lr_scheduler(cfg, optimizer)

    for epoch in range(current_iter, max_iter):
        scheduler.step(epoch)
        do_train(epoch, model, optimizer, train_loader, test_loader, cfg)
        # 清除部分无用变量
        cuda.empty_cache()
    save(model, cfg)
コード例 #29
0
    def evaluate_projections(self):
        """Project all entities according to each relation.
        """
        # TODO turn this to batch computation

        if self.evaluated_projections:
            return

        print('Projecting entities in relations spaces.')

        for i in tqdm(range(self.number_entities)):
            ent_proj_vect = self.ent_proj_vects.data[i].view(1, -1)
            rel_proj_vects = self.rel_proj_vects.data.view(
                self.number_relations, self.rel_emb_dim, 1)

            projection_matrices = matmul(rel_proj_vects, ent_proj_vect)

            if projection_matrices.is_cuda:
                id_mat = eye(n=self.rel_emb_dim,
                             m=self.ent_emb_dim,
                             device='cuda')
            else:
                id_mat = eye(n=self.rel_emb_dim, m=self.ent_emb_dim)

            id_mat = id_mat.view(1, self.rel_emb_dim, self.ent_emb_dim)

            projection_matrices += id_mat.expand(self.number_relations,
                                                 self.rel_emb_dim,
                                                 self.ent_emb_dim)

            empty_cache()

            mask = tensor([i]).long()

            if self.entity_embeddings.weight.is_cuda:
                assert self.projected_entities.is_cuda
                empty_cache()
                mask = mask.cuda()

            entity = self.entity_embeddings(mask.cuda())
            projected_entity = matmul(projection_matrices,
                                      entity.view(-1)).detach()
            projected_entity = projected_entity.view(self.number_relations,
                                                     self.rel_emb_dim, 1)
            self.projected_entities[:, :, i] = projected_entity.view(
                self.number_relations, self.rel_emb_dim)

            del projected_entity

        self.evaluated_projections = True
コード例 #30
0
ファイル: utils.py プロジェクト: mgb2403/cs695-Project
def translate_batch(model, tokenizer, src_text_list, cuda=True):
    if cuda:
        batch = tokenizer.prepare_seq2seq_batch(src_texts=src_text,
                                                return_tensors="pt").to('cuda')
        gen = model.generate(**batch).to('cuda')
        words: List[str] = tokenizer.batch_decode(gen,
                                                  skip_special_tokens=True)
        c.empty_cache()
    else:
        batch = tokenizer.prepare_seq2seq_batch(src_texts=src_text,
                                                return_tensors="pt")
        gen = model.generate(**batch)
        words: List[str] = tokenizer.batch_decode(gen,
                                                  skip_special_tokens=True)
    return words