def __call__(self, name, fn, obs): assert obs is None, "TransformReparam does not support observe statements" assert fn.event_dim >= self.transform.event_dim, ( "Cannot transform along batch dimension; " "try converting a batch dimension to an event dimension") # Draw noise from the base distribution. transform = ComposeTransform( [_with_cache(biject_to(fn.support).inv), self.transform]) x_trans = pyro.sample("{}_{}".format(name, self.suffix), dist.TransformedDistribution(fn, transform)) # Differentiably transform. x = transform.inv(x_trans) # should be free due to transform cache # Simulate a pyro.deterministic() site. new_fn = dist.Delta(x, event_dim=fn.event_dim) return new_fn, x
def __call__(self, name, fn, obs): assert obs is None, "TransformReparam does not support observe statements" event_dim = fn.event_dim transform = self.transform with ExitStack() as stack: shift = max(0, transform.event_dim - event_dim) if shift: if not self.experimental_allow_batch: raise ValueError( "Cannot transform along batch dimension; try either" "converting a batch dimension to an event dimension, or " "setting experimental_allow_batch=True.") # Reshape and mute plates using block_plate. from pyro.contrib.forecast.util import ( reshape_batch, reshape_transform_batch, ) old_shape = fn.batch_shape new_shape = old_shape[:-shift] + ( 1, ) * shift + old_shape[-shift:] fn = reshape_batch(fn, new_shape).to_event(shift) transform = reshape_transform_batch(transform, old_shape + fn.event_shape, new_shape + fn.event_shape) for dim in range(-shift, 0): stack.enter_context(block_plate(dim=dim, strict=False)) # Draw noise from the base distribution. transform = ComposeTransform( [biject_to(fn.support).inv.with_cache(), self.transform]) x_trans = pyro.sample("{}_{}".format(name, self.suffix), dist.TransformedDistribution(fn, transform)) # Differentiably transform. x = transform.inv(x_trans) # should be free due to transform cache if shift: x = x.reshape(x.shape[:-2 * shift - event_dim] + x.shape[-shift - event_dim:]) # Simulate a pyro.deterministic() site. new_fn = dist.Delta(x, event_dim=event_dim) return new_fn, x
def apply(self, msg): name = msg["name"] fn = msg["fn"] value = msg["value"] is_observed = msg["is_observed"] event_dim = fn.event_dim transform = self.transform with ExitStack() as stack: shift = max(0, transform.event_dim - event_dim) if shift: if not self.experimental_allow_batch: raise ValueError( "Cannot transform along batch dimension; try either" "converting a batch dimension to an event dimension, or " "setting experimental_allow_batch=True.") # Reshape and mute plates using block_plate. from pyro.contrib.forecast.util import ( reshape_batch, reshape_transform_batch, ) old_shape = fn.batch_shape new_shape = old_shape[:-shift] + ( 1, ) * shift + old_shape[-shift:] fn = reshape_batch(fn, new_shape).to_event(shift) transform = reshape_transform_batch(transform, old_shape + fn.event_shape, new_shape + fn.event_shape) if value is not None: value = value.reshape(value.shape[:-shift - event_dim] + (1, ) * shift + value.shape[-shift - event_dim:]) for dim in range(-shift, 0): stack.enter_context(block_plate(dim=dim, strict=False)) # Differentiably invert transform. transform = ComposeTransform( [biject_to(fn.support).inv.with_cache(), self.transform]) value_trans = None if value is not None: value_trans = transform(value) # Draw noise from the base distribution. value_trans = pyro.sample( f"{name}_{self.suffix}", dist.TransformedDistribution(fn, transform), obs=value_trans, infer={"is_observed": is_observed}, ) # Differentiably transform. This should be free due to transform cache. if value is None: value = transform.inv(value_trans) if shift: value = value.reshape(value.shape[:-2 * shift - event_dim] + value.shape[-shift - event_dim:]) # Simulate a pyro.deterministic() site. new_fn = dist.Delta(value, event_dim=event_dim) return {"fn": new_fn, "value": value, "is_observed": True}