コード例 #1
0
ファイル: base.py プロジェクト: OpenXAIProject/dac
def sample_partitions(B, N, K, alpha=1.0, rand_K=True, device='cpu'):
    pi = Dirichlet(alpha * torch.ones(K)).sample([B]).to(device)
    if rand_K:
        to_use = (torch.rand(B, K) < 0.5).float().to(device)
        to_use[..., 0] = 1
        pi = pi * to_use
        pi = pi / pi.sum(1, keepdim=True)
    labels = Categorical(probs=pi).sample([N]).to(device)
    labels = labels.transpose(0, 1).contiguous()
    return labels
コード例 #2
0
def sample_labels(B, N, K_low, K_high, alpha=1.0):
    pi = Dirichlet(alpha * torch.ones(K_high)).sample([B])
    K = torch.randint(K_low, K_high + 1, size=(B, ))
    to_use = torch.zeros(B, K_high).int()
    for i, k in enumerate(K):
        to_use[i, :k] = 1
    pi = pi * to_use
    pi = pi / pi.sum(1, keepdim=True)
    labels = Categorical(probs=pi).sample([N])
    labels = labels.transpose(0, 1).contiguous()
    return labels