def forward(self, x): out = F.Sigmoid(self.bn1(self.conv1(x))) out = F.Sigmoid(self.bn2(self.conv2(out))) out = self.bn3(self.conv3(out)) out += self.shortcut(x) out = F.Sigmoid(out) return out
def forward(self, x): out = F.Sigmoid(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = F.avg_pool2d(out, 4) out = out.view(out.size(0), -1) out = self.linear(out) return out
def __init__(self): super(CVAE, self).__init__() self.relu = nn.ReLU() self.sigmoid = nn.Sigmoid() # For Encoder self.fcE = nn.Linear(X_dim + y_dim, h_dim) self.fcE_mu = nn.Linear(h_dim, Z_dim) self.fcE_var = nn.Linear(h_dim, Z_dim) # For Decoder self.fcD1 = nn.Linear(Z_dim + y_dim, h_dim) self.fcD2 = nn.Linear(h_dim, X_dim)
('conv3_1', nn.Conv2d(64, 64, kernel_size=3,stride = 1, padding = 1)), ('relu3_1', nn.ReLU()), ('weight_norm3_1', nn.utils.weight_norm()), # Look into this later ('conv3_2', nn.Conv2d(64, 64, kernel_size=3,stride = 1, padding = 1)), ('relu3_2', nn.ReLU()) ('weight_norm3_2', nn.utils.weight_norm()), # Look into this later ('pool3', nn.MaxPool2d(2,2)), ('fc4', nn.Linear(12288, 100)), ('tanh4' nn.Tanh()), ('fc5', nn.Linear(100,2)), ('tanh5' nn.Tanh()), ('fc6', nn.Linear(2,1)), # ('sigmoid6' F.Sigmoid()) ])) return F.Sigmoid(net) class DiscriminatorNet(nn.Module): def __init__(self): super(DiscriminatorNet, self).__init__() self.net = nn.Sequential(OrderedDict([ ('merge', nn.Conv2d(4, 3, kernel_size=1,stride = 1, padding = 0)), ('conv1', nn.Conv2d(3, 32, kernel_size=3,stride = 1, padding = 1)), ('relu1', nn.ReLU()), ('pool1', nn.MaxPool2d(4,4)), ('conv2_1', nn.Conv2d(32, 64, kernel_size=3,stride = 1, padding = 1)), ('relu2_1', nn.ReLU()), ('conv2_2', nn.Conv2d(64, 64, kernel_size=3,stride = 1, padding = 1)), ('relu2_2', nn.ReLU()),