コード例 #1
0
    def __init__(self, d):
        super(decoder5, self).__init__()

        # decoder
        self.reflecPad15 = nn.ReflectionPad2d((1, 1, 1, 1))
        self.conv15 = nn.Conv2d(512, 512, 3, 1, 0)

        self.conv15.weight = torch.nn.Parameter(
            torch.Tensor(d.modules[1].weight))
        self.conv15.bias = torch.nn.Parameter(torch.Tensor(d.modules[1].bias))
        self.relu15 = nn.ReLU(inplace=True)

        self.unpool = nn.UpsamplingNearest2d(scale_factor=2)
        # 28 x 28

        self.reflecPad16 = nn.ReflectionPad2d((1, 1, 1, 1))
        self.conv16 = nn.Conv2d(512, 512, 3, 1, 0)

        self.conv16.weight = torch.nn.Parameter(
            torch.Tensor(d.modules[5].weight))
        self.conv16.bias = torch.nn.Parameter(torch.Tensor(d.modules[5].bias))
        self.relu16 = nn.ReLU(inplace=True)
        # 28 x 28

        self.reflecPad17 = nn.ReflectionPad2d((1, 1, 1, 1))
        self.conv17 = nn.Conv2d(512, 512, 3, 1, 0)

        self.conv17.weight = torch.nn.Parameter(
            torch.Tensor(d.modules[8].weight))
        self.conv17.bias = torch.nn.Parameter(torch.Tensor(d.modules[8].bias))
        self.relu17 = nn.ReLU(inplace=True)
        # 28 x 28

        self.reflecPad18 = nn.ReflectionPad2d((1, 1, 1, 1))
        self.conv18 = nn.Conv2d(512, 512, 3, 1, 0)

        self.conv18.weight = torch.nn.Parameter(
            torch.Tensor(d.modules[11].weight))
        self.conv18.bias = torch.nn.Parameter(torch.Tensor(d.modules[11].bias))
        self.relu18 = nn.ReLU(inplace=True)
        # 28 x 28

        self.reflecPad19 = nn.ReflectionPad2d((1, 1, 1, 1))
        self.conv19 = nn.Conv2d(512, 256, 3, 1, 0)

        self.conv19.weight = torch.nn.Parameter(
            torch.Tensor(d.modules[14].weight))
        self.conv19.bias = torch.nn.Parameter(torch.Tensor(d.modules[14].bias))
        self.relu19 = nn.ReLU(inplace=True)
        # 28 x 28

        self.unpool2 = nn.UpsamplingNearest2d(scale_factor=2)
        # 56 x 56

        self.reflecPad20 = nn.ReflectionPad2d((1, 1, 1, 1))
        self.conv20 = nn.Conv2d(256, 256, 3, 1, 0)

        self.conv20.weight = torch.nn.Parameter(
            torch.Tensor(d.modules[18].weight))
        self.conv20.bias = torch.nn.Parameter(torch.Tensor(d.modules[18].bias))
        self.relu20 = nn.ReLU(inplace=True)
        # 56 x 56

        self.reflecPad21 = nn.ReflectionPad2d((1, 1, 1, 1))
        self.conv21 = nn.Conv2d(256, 256, 3, 1, 0)

        self.conv21.weight = torch.nn.Parameter(
            torch.Tensor(d.modules[21].weight))
        self.conv21.bias = torch.nn.Parameter(torch.Tensor(d.modules[21].bias))
        self.relu21 = nn.ReLU(inplace=True)

        self.reflecPad22 = nn.ReflectionPad2d((1, 1, 1, 1))
        self.conv22 = nn.Conv2d(256, 256, 3, 1, 0)

        self.conv22.weight = torch.nn.Parameter(
            torch.Tensor(d.modules[24].weight))
        self.conv22.bias = torch.nn.Parameter(torch.Tensor(d.modules[24].bias))
        self.relu22 = nn.ReLU(inplace=True)

        self.reflecPad23 = nn.ReflectionPad2d((1, 1, 1, 1))
        self.conv23 = nn.Conv2d(256, 128, 3, 1, 0)

        self.conv23.weight = torch.nn.Parameter(
            torch.Tensor(d.modules[27].weight))
        self.conv23.bias = torch.nn.Parameter(torch.Tensor(d.modules[27].bias))
        self.relu23 = nn.ReLU(inplace=True)

        self.unpool3 = nn.UpsamplingNearest2d(scale_factor=2)
        # 112 X 112

        self.reflecPad24 = nn.ReflectionPad2d((1, 1, 1, 1))
        self.conv24 = nn.Conv2d(128, 128, 3, 1, 0)

        self.conv24.weight = torch.nn.Parameter(
            torch.Tensor(d.modules[31].weight))
        self.conv24.bias = torch.nn.Parameter(torch.Tensor(d.modules[31].bias))
        self.relu24 = nn.ReLU(inplace=True)

        self.reflecPad25 = nn.ReflectionPad2d((1, 1, 1, 1))
        self.conv25 = nn.Conv2d(128, 64, 3, 1, 0)

        self.conv25.weight = torch.nn.Parameter(
            torch.Tensor(d.modules[34].weight))
        self.conv25.bias = torch.nn.Parameter(torch.Tensor(d.modules[34].bias))
        self.relu25 = nn.ReLU(inplace=True)

        self.unpool4 = nn.UpsamplingNearest2d(scale_factor=2)

        self.reflecPad26 = nn.ReflectionPad2d((1, 1, 1, 1))
        self.conv26 = nn.Conv2d(64, 64, 3, 1, 0)

        self.conv26.weight = torch.nn.Parameter(
            torch.Tensor(d.modules[38].weight))
        self.conv26.bias = torch.nn.Parameter(torch.Tensor(d.modules[38].bias))
        self.relu26 = nn.ReLU(inplace=True)

        self.reflecPad27 = nn.ReflectionPad2d((1, 1, 1, 1))
        self.conv27 = nn.Conv2d(64, 3, 3, 1, 0)

        self.conv27.weight = torch.nn.Parameter(
            torch.Tensor(d.modules[41].weight))
        self.conv27.bias = torch.nn.Parameter(torch.Tensor(d.modules[41].bias))
コード例 #2
0
def build_layers(
    img_sz,
    img_fm,
    init_fm,
    max_fm,
    n_layers,
    n_attr,
    n_skip,
    deconv_method,
    instance_norm,
    enc_dropout,
    dec_dropout,
):
    """
    Build auto-encoder layers.
    """
    assert init_fm <= max_fm
    assert n_skip <= n_layers - 1
    assert np.log2(img_sz).is_integer()
    assert n_layers <= int(np.log2(img_sz))
    assert type(instance_norm) is bool
    assert 0 <= enc_dropout < 1
    assert 0 <= dec_dropout < 1
    norm_fn = nn.InstanceNorm2d if instance_norm else nn.BatchNorm2d

    enc_layers = []
    dec_layers = []

    n_in = img_fm
    n_out = init_fm

    for i in range(n_layers):
        enc_layer = []
        dec_layer = []
        skip_connection = n_layers - (n_skip + 1) <= i < n_layers - 1
        n_dec_in = n_out + n_attr + (n_out if skip_connection else 0)
        n_dec_out = n_in

        # encoder layer
        enc_layer.append(nn.Conv2d(n_in, n_out, 4, 2, 1))
        if i > 0:
            enc_layer.append(norm_fn(n_out, affine=True))
        enc_layer.append(nn.LeakyReLU(0.2, inplace=True))
        if enc_dropout > 0:
            enc_layer.append(nn.Dropout(enc_dropout))

        # decoder layer
        if deconv_method == "upsampling":
            dec_layer.append(nn.UpsamplingNearest2d(scale_factor=2))
            dec_layer.append(nn.Conv2d(n_dec_in, n_dec_out, 3, 1, 1))
        elif deconv_method == "convtranspose":
            dec_layer.append(
                nn.ConvTranspose2d(n_dec_in, n_dec_out, 4, 2, 1, bias=False))
        else:
            assert deconv_method == "pixelshuffle"
            dec_layer.append(nn.Conv2d(n_dec_in, n_dec_out * 4, 3, 1, 1))
            dec_layer.append(nn.PixelShuffle(2))
        if i > 0:
            dec_layer.append(norm_fn(n_dec_out, affine=True))
            if dec_dropout > 0 and i >= n_layers - 3:
                dec_layer.append(nn.Dropout(dec_dropout))
            dec_layer.append(nn.ReLU(inplace=True))
        else:
            pass
            # dec_layer.append(nn.Tanh())

        # update
        n_in = n_out
        n_out = min(2 * n_out, max_fm)
        enc_layers.append(nn.Sequential(*enc_layer))
        dec_layers.insert(0, nn.Sequential(*dec_layer))

    return enc_layers, dec_layers
コード例 #3
0
    def __init__(self):
        super(decoder5, self).__init__()

        # decoder
        self.reflecPad15 = nn.ReflectionPad2d((1, 1, 1, 1))
        self.conv15 = nn.Conv2d(512, 512, 3, 1, 0)
        self.relu15 = nn.ReLU(inplace=True)

        self.unpool = nn.UpsamplingNearest2d(scale_factor=2)
        # 28 x 28

        self.reflecPad16 = nn.ReflectionPad2d((1, 1, 1, 1))
        self.conv16 = nn.Conv2d(512, 512, 3, 1, 0)
        self.relu16 = nn.ReLU(inplace=True)
        # 28 x 28

        self.reflecPad17 = nn.ReflectionPad2d((1, 1, 1, 1))
        self.conv17 = nn.Conv2d(512, 512, 3, 1, 0)
        self.relu17 = nn.ReLU(inplace=True)
        # 28 x 28

        self.reflecPad18 = nn.ReflectionPad2d((1, 1, 1, 1))
        self.conv18 = nn.Conv2d(512, 512, 3, 1, 0)
        self.relu18 = nn.ReLU(inplace=True)
        # 28 x 28

        self.reflecPad19 = nn.ReflectionPad2d((1, 1, 1, 1))
        self.conv19 = nn.Conv2d(512, 256, 3, 1, 0)
        self.relu19 = nn.ReLU(inplace=True)
        # 28 x 28

        self.unpool2 = nn.UpsamplingNearest2d(scale_factor=2)
        # 56 x 56

        self.reflecPad20 = nn.ReflectionPad2d((1, 1, 1, 1))
        self.conv20 = nn.Conv2d(256, 256, 3, 1, 0)
        self.relu20 = nn.ReLU(inplace=True)
        # 56 x 56

        self.reflecPad21 = nn.ReflectionPad2d((1, 1, 1, 1))
        self.conv21 = nn.Conv2d(256, 256, 3, 1, 0)
        self.relu21 = nn.ReLU(inplace=True)

        self.reflecPad22 = nn.ReflectionPad2d((1, 1, 1, 1))
        self.conv22 = nn.Conv2d(256, 256, 3, 1, 0)
        self.relu22 = nn.ReLU(inplace=True)

        self.reflecPad23 = nn.ReflectionPad2d((1, 1, 1, 1))
        self.conv23 = nn.Conv2d(256, 128, 3, 1, 0)
        self.relu23 = nn.ReLU(inplace=True)

        self.unpool3 = nn.UpsamplingNearest2d(scale_factor=2)
        # 112 X 112

        self.reflecPad24 = nn.ReflectionPad2d((1, 1, 1, 1))
        self.conv24 = nn.Conv2d(128, 128, 3, 1, 0)
        self.relu24 = nn.ReLU(inplace=True)

        self.reflecPad25 = nn.ReflectionPad2d((1, 1, 1, 1))
        self.conv25 = nn.Conv2d(128, 64, 3, 1, 0)
        self.relu25 = nn.ReLU(inplace=True)

        self.unpool4 = nn.UpsamplingNearest2d(scale_factor=2)

        self.reflecPad26 = nn.ReflectionPad2d((1, 1, 1, 1))
        self.conv26 = nn.Conv2d(64, 64, 3, 1, 0)
        self.relu26 = nn.ReLU(inplace=True)

        self.reflecPad27 = nn.ReflectionPad2d((1, 1, 1, 1))
        self.conv27 = nn.Conv2d(64, 3, 3, 1, 0)
コード例 #4
0
def deconv_block(in_dim, out_dim):
    return nn.Sequential(
        nn.Conv2d(in_dim, out_dim, kernel_size=3, stride=1, padding=1),
        nn.ELU(True),
        nn.Conv2d(out_dim, out_dim, kernel_size=3, stride=1, padding=1),
        nn.ELU(True), nn.UpsamplingNearest2d(scale_factor=2))
コード例 #5
0
    def __init__(self,d):
        super(decoder,self).__init__()

        # decoder
        self.reflecPad15 = nn.ReflectionPad2d((1,1,1,1))
        self.conv15 = nn.Conv2d(512,512,3,1,0)
        self.conv15.weight = torch.nn.Parameter(d.get(1).weight.float())
        self.conv15.bias = torch.nn.Parameter(d.get(1).bias.float())
        self.relu15 = nn.ReLU(inplace=True)

        self.unpool = nn.UpsamplingNearest2d(scale_factor=2)
        # 28 x 28

        self.reflecPad16 = nn.ReflectionPad2d((1,1,1,1))
        self.conv16 = nn.Conv2d(512,512,3,1,0)
        self.conv16.weight = torch.nn.Parameter(d.get(5).weight.float())
        self.conv16.bias = torch.nn.Parameter(d.get(5).bias.float())
        self.relu16 = nn.ReLU(inplace=True)
        # 28 x 28

        self.reflecPad17 = nn.ReflectionPad2d((1,1,1,1))
        self.conv17 = nn.Conv2d(512,512,3,1,0)
        self.conv17.weight = torch.nn.Parameter(d.get(8).weight.float())
        self.conv17.bias = torch.nn.Parameter(d.get(8).bias.float())
        self.relu17 = nn.ReLU(inplace=True)
        # 28 x 28

        self.reflecPad18 = nn.ReflectionPad2d((1,1,1,1))
        self.conv18 = nn.Conv2d(512,512,3,1,0)
        self.conv18.weight = torch.nn.Parameter(d.get(11).weight.float())
        self.conv18.bias = torch.nn.Parameter(d.get(11).bias.float())
        self.relu18 = nn.ReLU(inplace=True)
        # 28 x 28

        self.reflecPad19 = nn.ReflectionPad2d((1,1,1,1))
        self.conv19 = nn.Conv2d(512,256,3,1,0)
        self.conv19.weight = torch.nn.Parameter(d.get(14).weight.float())
        self.conv19.bias = torch.nn.Parameter(d.get(14).bias.float())
        self.relu19 = nn.ReLU(inplace=True)
        # 28 x 28

        self.unpool2 = nn.UpsamplingNearest2d(scale_factor=2)
        # 56 x 56

        self.reflecPad20 = nn.ReflectionPad2d((1,1,1,1))
        self.conv20 = nn.Conv2d(256,256,3,1,0)
        self.conv20.weight = torch.nn.Parameter(d.get(18).weight.float())
        self.conv20.bias = torch.nn.Parameter(d.get(18).bias.float())
        self.relu20 = nn.ReLU(inplace=True)
        # 56 x 56

        self.reflecPad21 = nn.ReflectionPad2d((1,1,1,1))
        self.conv21 = nn.Conv2d(256,256,3,1,0)
        self.conv21.weight = torch.nn.Parameter(d.get(21).weight.float())
        self.conv21.bias = torch.nn.Parameter(d.get(21).bias.float())
        self.relu21 = nn.ReLU(inplace=True)

        self.reflecPad22 = nn.ReflectionPad2d((1,1,1,1))
        self.conv22 = nn.Conv2d(256,256,3,1,0)
        self.conv22.weight = torch.nn.Parameter(d.get(24).weight.float())
        self.conv22.bias = torch.nn.Parameter(d.get(24).bias.float())
        self.relu22 = nn.ReLU(inplace=True)

        self.reflecPad23 = nn.ReflectionPad2d((1,1,1,1))
        self.conv23 = nn.Conv2d(256,128,3,1,0)
        self.conv23.weight = torch.nn.Parameter(d.get(27).weight.float())
        self.conv23.bias = torch.nn.Parameter(d.get(27).bias.float())
        self.relu23 = nn.ReLU(inplace=True)

        self.unpool3 = nn.UpsamplingNearest2d(scale_factor=2)
        # 112 X 112

        self.reflecPad24 = nn.ReflectionPad2d((1,1,1,1))
        self.conv24 = nn.Conv2d(128,128,3,1,0)
        self.conv24.weight = torch.nn.Parameter(d.get(31).weight.float())
        self.conv24.bias = torch.nn.Parameter(d.get(31).bias.float())
        self.relu24 = nn.ReLU(inplace=True)

        self.reflecPad25 = nn.ReflectionPad2d((1,1,1,1))
        self.conv25 = nn.Conv2d(128,64,3,1,0)
        self.conv25.weight = torch.nn.Parameter(d.get(34).weight.float())
        self.conv25.bias = torch.nn.Parameter(d.get(34).bias.float())
        self.relu25 = nn.ReLU(inplace=True)

        self.unpool4 = nn.UpsamplingNearest2d(scale_factor=2)

        self.reflecPad26 = nn.ReflectionPad2d((1,1,1,1))
        self.conv26 = nn.Conv2d(64,64,3,1,0)
        self.conv26.weight = torch.nn.Parameter(d.get(38).weight.float())
        self.conv26.bias = torch.nn.Parameter(d.get(38).bias.float())
        self.relu26 = nn.ReLU(inplace=True)

        self.reflecPad27 = nn.ReflectionPad2d((1,1,1,1))
        self.conv27 = nn.Conv2d(64,3,3,1,0)
        self.conv27.weight = torch.nn.Parameter(d.get(41).weight.float())
        self.conv27.bias = torch.nn.Parameter(d.get(41).bias.float())
コード例 #6
0
    def detect_object_in_image(net_model,
                               pnp_solver,
                               in_img,
                               config,
                               grid_belief_debug=False,
                               norm_belief=True,
                               run_sampling=False,
                               network='dope'):
        '''Detect objects in a image using a specific trained network model'''

        if in_img is None:
            return []

        # Run network inference
        image_tensor = transform(in_img)
        image_torch = Variable(image_tensor).cuda().unsqueeze(0)
        with torch.cuda.amp.autocast():
            out, seg = net_model(image_torch)
        vertex2 = out[-1][0].to(torch.float32)
        aff = seg[-1][0].to(torch.float32)

        # Find objects from network output
        detected_objects = ObjectDetector.find_object_poses(
            vertex2, aff, pnp_solver, config
            # run_sampling=run_sampling,
            # scale_factor = scale_factor,
            # OFFSET_DUE_TO_UPSAMPLING = OFFSET_DUE_TO_UPSAMPLING
        )

        if not grid_belief_debug:
            return detected_objects
        else:
            # Run the belief maps debug display on the beliefmaps
            upsampling = nn.UpsamplingNearest2d(scale_factor=1)
            tensor = vertex2  # shape [9, 50, 50]
            belief_imgs = []
            in_img = (torch.tensor(in_img).float() / 255.0)
            in_img *= 0.7

            for j in range(tensor.size()[0]):
                belief = tensor[j].clone()
                if norm_belief:
                    belief -= float(torch.min(belief).item())
                    belief /= float(torch.max(belief).item())

                # print (image_torch.size())
                # raise()
                # belief *= 0.5
                # print(in_img.size())
                belief = upsampling(
                    belief.unsqueeze(0).unsqueeze(0)).squeeze().squeeze().data
                belief = torch.clamp(belief, 0, 1).cpu()
                belief = torch.cat([
                    # belief.unsqueeze(0) + in_img[:,:,0],
                    # belief.unsqueeze(0) + in_img[:,:,1],
                    # belief.unsqueeze(0) + in_img[:,:,2]
                    belief.unsqueeze(0),
                    belief.unsqueeze(0),
                    belief.unsqueeze(0)
                ]).unsqueeze(0)
                belief = torch.clamp(belief, 0, 1)

                # belief_imgs.append(belief.data.squeeze().cpu().numpy().transpose(1,2,0))
                belief_imgs.append(belief.data.squeeze().numpy())

            # Create the image grid
            belief_imgs = torch.tensor(np.array(belief_imgs))

            im_belief = ObjectDetector.get_image_grid(belief_imgs,
                                                      None,
                                                      mean=0,
                                                      std=1)

            return detected_objects, im_belief
コード例 #7
0
        return self.lambda_func(self.forward_prepare(input))


class LambdaMap(LambdaBase):
    def forward(self, input):
        return list(map(self.lambda_func, self.forward_prepare(input)))


class LambdaReduce(LambdaBase):
    def forward(self, input):
        return reduce(self.lambda_func, self.forward_prepare(input))


feature_invertor_conv3_1 = nn.Sequential(  # Sequential,
    nn.ReflectionPad2d((1, 1, 1, 1)),
    nn.Conv2d(256, 128, (3, 3)),
    nn.ReLU(),
    nn.UpsamplingNearest2d(scale_factor=2),
    nn.ReflectionPad2d((1, 1, 1, 1)),
    nn.Conv2d(128, 128, (3, 3)),
    nn.ReLU(),
    nn.ReflectionPad2d((1, 1, 1, 1)),
    nn.Conv2d(128, 64, (3, 3)),
    nn.ReLU(),
    nn.UpsamplingNearest2d(scale_factor=2),
    nn.ReflectionPad2d((1, 1, 1, 1)),
    nn.Conv2d(64, 64, (3, 3)),
    nn.ReLU(),
    nn.ReflectionPad2d((1, 1, 1, 1)),
    nn.Conv2d(64, 3, (3, 3)),
)
コード例 #8
0
ファイル: wgan_gp.py プロジェクト: takahiro-itazuri/wgan-gp
def UpLayer(type, scale_factor=2):
    if type == 'nearest':
        return nn.UpsamplingNearest2d(scale_factor=scale_factor)
    elif type == 'bilinear':
        return nn.UpsamplingBilinear2d(scale_factor=2)
コード例 #9
0
    def __init__(self, d):
        super(decoder4, self).__init__()
        # decoder
        self.reflecPad11 = nn.ReflectionPad2d((1, 1, 1, 1))
        self.conv11 = nn.Conv2d(512, 256, 3, 1, 0)
        self.conv11.weight = torch.nn.Parameter(d.get(1).weight.float())
        self.conv11.bias = torch.nn.Parameter(d.get(1).bias.float())
        self.relu11 = nn.ReLU(inplace=True)
        # 28 x 28

        self.unpool = nn.UpsamplingNearest2d(scale_factor=2)
        # 56 x 56

        self.reflecPad12 = nn.ReflectionPad2d((1, 1, 1, 1))
        self.conv12 = nn.Conv2d(256, 256, 3, 1, 0)
        self.conv12.weight = torch.nn.Parameter(d.get(5).weight.float())
        self.conv12.bias = torch.nn.Parameter(d.get(5).bias.float())
        self.relu12 = nn.ReLU(inplace=True)
        # 56 x 56

        self.reflecPad13 = nn.ReflectionPad2d((1, 1, 1, 1))
        self.conv13 = nn.Conv2d(256, 256, 3, 1, 0)
        self.conv13.weight = torch.nn.Parameter(d.get(8).weight.float())
        self.conv13.bias = torch.nn.Parameter(d.get(8).bias.float())
        self.relu13 = nn.ReLU(inplace=True)
        # 56 x 56

        self.reflecPad14 = nn.ReflectionPad2d((1, 1, 1, 1))
        self.conv14 = nn.Conv2d(256, 256, 3, 1, 0)
        self.conv14.weight = torch.nn.Parameter(d.get(11).weight.float())
        self.conv14.bias = torch.nn.Parameter(d.get(11).bias.float())
        self.relu14 = nn.ReLU(inplace=True)
        # 56 x 56

        self.reflecPad15 = nn.ReflectionPad2d((1, 1, 1, 1))
        self.conv15 = nn.Conv2d(256, 128, 3, 1, 0)
        self.conv15.weight = torch.nn.Parameter(d.get(14).weight.float())
        self.conv15.bias = torch.nn.Parameter(d.get(14).bias.float())
        self.relu15 = nn.ReLU(inplace=True)
        # 56 x 56

        self.unpool2 = nn.UpsamplingNearest2d(scale_factor=2)
        # 112 x 112

        self.reflecPad16 = nn.ReflectionPad2d((1, 1, 1, 1))
        self.conv16 = nn.Conv2d(128, 128, 3, 1, 0)
        self.conv16.weight = torch.nn.Parameter(d.get(18).weight.float())
        self.conv16.bias = torch.nn.Parameter(d.get(18).bias.float())
        self.relu16 = nn.ReLU(inplace=True)
        # 112 x 112

        self.reflecPad17 = nn.ReflectionPad2d((1, 1, 1, 1))
        self.conv17 = nn.Conv2d(128, 64, 3, 1, 0)
        self.conv17.weight = torch.nn.Parameter(d.get(21).weight.float())
        self.conv17.bias = torch.nn.Parameter(d.get(21).bias.float())
        self.relu17 = nn.ReLU(inplace=True)
        # 112 x 112

        self.unpool3 = nn.UpsamplingNearest2d(scale_factor=2)
        # 224 x 224

        self.reflecPad18 = nn.ReflectionPad2d((1, 1, 1, 1))
        self.conv18 = nn.Conv2d(64, 64, 3, 1, 0)
        self.conv18.weight = torch.nn.Parameter(d.get(25).weight.float())
        self.conv18.bias = torch.nn.Parameter(d.get(25).bias.float())
        self.relu18 = nn.ReLU(inplace=True)
        # 224 x 224

        self.reflecPad19 = nn.ReflectionPad2d((1, 1, 1, 1))
        self.conv19 = nn.Conv2d(64, 3, 3, 1, 0)
        self.conv19.weight = torch.nn.Parameter(d.get(28).weight.float())
        self.conv19.bias = torch.nn.Parameter(d.get(28).bias.float())
コード例 #10
0
def Upsample(x):
    Upsample_m = nn.UpsamplingNearest2d(scale_factor=2)  #size=(120,360)
    x = Upsample_m(x)
    return x
コード例 #11
0
    def __init__(self, img_size, channels, kernel_size, dropout, final_activation=nn.Tanh()):
        super().__init__()
        # TODO: use nn.ReflectionPad2d to allow even numbered kernel sizes
        # Padding to ensure that input and output dims are the same
        pad = (int)((kernel_size - 1)/2)
        self.kernel_size = kernel_size
        self.img_size = img_size
        self.channels = channels
        self.pad = pad

        fc_nodes = (int)(8*8*channels)

        # Output of encoder is a 
        self.encoder = nn.Sequential(
            nn.Conv2d(
                3,              # input channels
                channels,       # output channels
                kernel_size,    # kernel size
                stride=1,
                padding=pad,
            ),
            nn.ELU(),
            nn.Conv2d(channels, channels, kernel_size, stride=1, padding=pad),
            nn.ELU(),
            nn.Conv2d(channels, channels, kernel_size, stride=2, padding=pad),
            nn.ELU(),

            nn.Dropout2d(dropout),

            # Image size halved

            nn.Conv2d(channels, channels*2, kernel_size, stride=1, padding=pad),
            nn.ELU(),
            nn.Conv2d(channels*2, channels*2, kernel_size, stride=2, padding=pad),
            nn.ELU(),

            # Image size quartered

            nn.Conv2d(channels*2, channels*3, kernel_size, stride=1, padding=pad),
            nn.ELU(),
            nn.Conv2d(channels*3, channels*3, kernel_size, stride=2, padding=pad),
            nn.ELU(),


            # Image size one eigth

            nn.Conv2d(channels*3, channels*4, kernel_size, stride=1, padding=pad),
            nn.ELU(),
            nn.Conv2d(channels*4, channels*4, kernel_size, stride=2, padding=pad),
            nn.ELU(),

            # Image size on sixteenth

            nn.Conv2d(channels*4, channels*5, kernel_size, stride=1, padding=pad),
            nn.ELU(),
            nn.Conv2d(channels*5, channels*5, kernel_size, stride=1, padding=pad),
            nn.ELU(),

            nn.Dropout2d(dropout),
            # nn.Conv2d(channels, channels, kernel_size, stride=2, padding=pad),
            # nn.ELU(),

        )

        self.fc1 = nn.Linear(8*8*channels*5, 64)
        self.fc2 = nn.Linear(64, 8*8*channels)

        self.decoder = nn.Sequential(
            # Image size one sixteenth
            nn.Conv2d(channels, channels, kernel_size, stride=1, padding=pad),
            nn.ELU(),
            nn.Conv2d(channels, channels, kernel_size, stride=1, padding=pad),
            nn.ELU(),

            nn.Dropout2d(dropout),

            nn.UpsamplingNearest2d(scale_factor=2),
           
            # Image size one eigth
            nn.Conv2d(channels, channels, kernel_size, stride=1, padding=pad),
            nn.ELU(),
            nn.Conv2d(channels, channels, kernel_size, stride=1, padding=pad),
            nn.ELU(),


            nn.UpsamplingNearest2d(scale_factor=2),

            # Image size one quarter
            nn.Conv2d(channels, channels, kernel_size, stride=1, padding=pad),
            nn.ELU(),
            nn.Conv2d(channels, channels, kernel_size, stride=1, padding=pad),
            nn.ELU(),

            nn.UpsamplingNearest2d(scale_factor=2),

            # Image size halved
            nn.Conv2d(channels, channels, kernel_size, stride=1, padding=pad),
            nn.ELU(),
            nn.Conv2d(channels, channels, kernel_size, stride=1, padding=pad),
            nn.ELU(),

            nn.UpsamplingNearest2d(scale_factor=2),

            # Image size normal
            nn.Conv2d(channels, channels, kernel_size, stride=1, padding=pad),
            nn.ELU(),
            nn.Conv2d(channels, channels, kernel_size, stride=1, padding=pad),
            nn.ELU(),
            nn.Dropout2d(dropout),

            nn.Conv2d(channels, 3, kernel_size, stride=1, padding=pad),
            final_activation,
        )
コード例 #12
0
    def __init__(self, base_n_channels, neck_n_channels):
        super(RIN, self).__init__()
        assert base_n_channels >= 8, "Base num channels should be at least 8"
        assert neck_n_channels >= 32, "Neck num channels should be at least 32"
        self.pc1 = PCBlock(channels_in=3,
                           channels_out=base_n_channels,
                           kernel_size=5,
                           stride=1,
                           padding=2)
        self.pc2 = PCBlock(channels_in=base_n_channels,
                           channels_out=base_n_channels * 2,
                           kernel_size=3,
                           stride=2,
                           padding=1)
        self.pc3 = PCBlock(channels_in=base_n_channels * 2,
                           channels_out=base_n_channels * 2,
                           kernel_size=3,
                           stride=1,
                           padding=1)
        self.pc4 = PCBlock(channels_in=base_n_channels * 2,
                           channels_out=base_n_channels * 4,
                           kernel_size=3,
                           stride=2,
                           padding=1)
        self.pc5 = PCBlock(channels_in=base_n_channels * 4,
                           channels_out=base_n_channels * 4,
                           kernel_size=3,
                           stride=1,
                           padding=1)
        self.pc6 = PCBlock(channels_in=base_n_channels * 4,
                           channels_out=base_n_channels * 4,
                           kernel_size=3,
                           stride=1,
                           padding=2,
                           dilation=2)
        self.pc7 = PCBlock(channels_in=base_n_channels * 4,
                           channels_out=base_n_channels * 4,
                           kernel_size=3,
                           stride=1,
                           padding=2,
                           dilation=2)
        self.pc8 = PCBlock(channels_in=base_n_channels * 4,
                           channels_out=base_n_channels * 4,
                           kernel_size=3,
                           stride=1,
                           padding=4,
                           dilation=4)
        self.pc9 = PCBlock(channels_in=base_n_channels * 4,
                           channels_out=base_n_channels * 4,
                           kernel_size=3,
                           stride=1,
                           padding=4,
                           dilation=4)
        self.pc10 = PCBlock(channels_in=base_n_channels * 4,
                            channels_out=base_n_channels * 4,
                            kernel_size=3,
                            stride=1,
                            padding=1)

        self.upsample = nn.UpsamplingNearest2d(scale_factor=2.0)

        self.pc11 = PCBlock(channels_in=base_n_channels * 4 + neck_n_channels,
                            channels_out=base_n_channels * 2,
                            kernel_size=3,
                            stride=1,
                            padding=1)
        self.pc12 = PCBlock(channels_in=base_n_channels * 2,
                            channels_out=base_n_channels * 2,
                            kernel_size=3,
                            stride=1,
                            padding=1)
        self.pc13 = PCBlock(channels_in=base_n_channels * 2,
                            channels_out=base_n_channels,
                            kernel_size=3,
                            stride=1,
                            padding=1)
        self.pc14 = PCBlock(channels_in=base_n_channels,
                            channels_out=base_n_channels,
                            kernel_size=3,
                            stride=1,
                            padding=1)

        self.conv1 = nn.Conv2d(base_n_channels,
                               3,
                               kernel_size=3,
                               stride=1,
                               padding=1)
        self.init_weights(init_type="normal", gain=0.02)
コード例 #13
0
    def __init__(self,
                 in_channels,
                 out_channels,
                 post_conv=True,
                 use_dropout=False,
                 dropout_prob=0.1,
                 norm=nn.BatchNorm2d,
                 upsampling_mode='transpose'):
        '''
        :param in_channels: Number of input channels
        :param out_channels: Number of output channels
        :param post_conv: Whether to have another convolutional layer after the upsampling layer.
        :param use_dropout: bool. Whether to use dropout or not.
        :param dropout_prob: Float. The dropout probability (if use_dropout is True)
        :param norm: Which norm to use. If None, no norm is used. Default is Batchnorm with affinity.
        :param upsampling_mode: Which upsampling mode: 
                transpose: Upsampling with stride-2, kernel size 4 transpose convolutions.
                bilinear: Feature map is upsampled with bilinear upsampling, then a conv layer.
                nearest: Feature map is upsampled with nearest neighbor upsampling, then a conv layer.
                shuffle: Feature map is upsampled with pixel shuffling, then a conv layer.
        '''
        super().__init__()

        net = list()

        if upsampling_mode == 'transpose':
            net += [
                nn.ConvTranspose2d(in_channels,
                                   out_channels,
                                   kernel_size=4,
                                   stride=2,
                                   padding=1,
                                   bias=True if norm is None else False)
            ]
        elif upsampling_mode == 'bilinear':
            net += [nn.UpsamplingBilinear2d(scale_factor=2)]
            net += [
                Conv2dSame(in_channels,
                           out_channels,
                           kernel_size=3,
                           bias=True if norm is None else False)
            ]
        elif upsampling_mode == 'nearest':
            net += [nn.UpsamplingNearest2d(scale_factor=2)]
            net += [
                Conv2dSame(in_channels,
                           out_channels,
                           kernel_size=3,
                           bias=True if norm is None else False)
            ]
        elif upsampling_mode == 'shuffle':
            net += [nn.PixelShuffle(upscale_factor=2)]
            net += [
                Conv2dSame(in_channels // 4,
                           out_channels,
                           kernel_size=3,
                           bias=True if norm is None else False)
            ]
        else:
            raise ValueError("Unknown upsampling mode!")

        if norm is not None:
            net += [norm(out_channels, affine=True)]

        net += [nn.ReLU(True)]

        if use_dropout:
            net += [nn.Dropout2d(dropout_prob, False)]

        if post_conv:
            net += [
                Conv2dSame(out_channels,
                           out_channels,
                           kernel_size=3,
                           bias=True if norm is None else False)
            ]

            if norm is not None:
                net += [norm(out_channels, affine=True)]

            net += [nn.ReLU(True)]

            if use_dropout:
                net += [nn.Dropout2d(0.1, False)]

        self.net = nn.Sequential(*net)
コード例 #14
0
 def __init__(self, inp=10, out=16, kernel_size=3, bias=True):
     super(TestUpsampleNearest2d, self).__init__()
     self.conv2d = nn.Conv2d(inp, out, kernel_size=kernel_size, bias=bias)
     self.up = nn.UpsamplingNearest2d(scale_factor=2)
コード例 #15
0
def lua_recursive_model(module, seq):
    for m in module.modules:
        name = type(m).__name__
        real = m
        if name == 'TorchObject':
            name = m._typename.replace('cudnn.', '')
            m = m._obj

        if name == 'SpatialConvolution':
            if not hasattr(m, 'groups'): m.groups = 1
            n = nn.Conv2d(m.nInputPlane,
                          m.nOutputPlane, (m.kW, m.kH), (m.dW, m.dH),
                          (m.padW, m.padH),
                          1,
                          m.groups,
                          bias=(m.bias is not None))
            copy_param(m, n)
            add_submodule(seq, n)
        elif name == 'SpatialBatchNormalization':
            n = nn.BatchNorm2d(m.running_mean.size(0), m.eps, m.momentum,
                               m.affine)
            copy_param(m, n)
            add_submodule(seq, n)
        elif name == 'ReLU':
            n = nn.ReLU()
            add_submodule(seq, n)
        elif name == 'SpatialMaxPooling':
            n = nn.MaxPool2d((m.kW, m.kH), (m.dW, m.dH), (m.padW, m.padH),
                             ceil_mode=m.ceil_mode)
            add_submodule(seq, n)
        elif name == 'SpatialAveragePooling':
            n = nn.AvgPool2d((m.kW, m.kH), (m.dW, m.dH), (m.padW, m.padH),
                             ceil_mode=m.ceil_mode)
            add_submodule(seq, n)
        elif name == 'SpatialUpSamplingNearest':
            n = nn.UpsamplingNearest2d(scale_factor=m.scale_factor)
            add_submodule(seq, n)
        elif name == 'View':
            n = Lambda(lambda x: x.view(x.size(0), -1))
            add_submodule(seq, n)
        elif name == 'Linear':
            # Linear in pytorch only accept 2D input
            n1 = Lambda(lambda x: x.view(1, -1) if 1 == len(x.size()) else x)
            n2 = nn.Linear(m.weight.size(1),
                           m.weight.size(0),
                           bias=(m.bias is not None))
            copy_param(m, n2)
            n = nn.Sequential(n1, n2)
            add_submodule(seq, n)
        elif name == 'Dropout':
            m.inplace = False
            n = nn.Dropout(m.p)
            add_submodule(seq, n)
        elif name == 'SoftMax':
            n = nn.Softmax()
            add_submodule(seq, n)
        elif name == 'Identity':
            n = Lambda(lambda x: x)  # do nothing
            add_submodule(seq, n)
        elif name == 'SpatialFullConvolution':
            n = nn.ConvTranspose2d(m.nInputPlane, m.nOutputPlane, (m.kW, m.kH),
                                   (m.dW, m.dH), (m.padW, m.padH))
            add_submodule(seq, n)
        elif name == 'SpatialReplicationPadding':
            n = nn.ReplicationPad2d((m.pad_l, m.pad_r, m.pad_t, m.pad_b))
            add_submodule(seq, n)
        elif name == 'SpatialReflectionPadding':
            n = nn.ReflectionPad2d((m.pad_l, m.pad_r, m.pad_t, m.pad_b))
            add_submodule(seq, n)
        elif name == 'Copy':
            n = Lambda(lambda x: x)  # do nothing
            add_submodule(seq, n)
        elif name == 'Narrow':
            n = Lambda(lambda x, a=
                       (m.dimension, m.index, m.length): x.narrow(*a))
            add_submodule(seq, n)
        elif name == 'SpatialCrossMapLRN':
            lrn = torch.legacy.nn.SpatialCrossMapLRN(m.size, m.alpha, m.beta,
                                                     m.k)
            n = Lambda(lambda x, lrn=lrn: Variable(lrn.forward(x.data)))
            add_submodule(seq, n)
        elif name == 'Sequential':
            n = nn.Sequential()
            lua_recursive_model(m, n)
            add_submodule(seq, n)
        elif name == 'ConcatTable':  # output is list
            n = LambdaMap(lambda x: x)
            lua_recursive_model(m, n)
            add_submodule(seq, n)
        elif name == 'CAddTable':  # input is list
            n = LambdaReduce(lambda x, y: x + y)
            add_submodule(seq, n)
        elif name == 'Concat':
            dim = m.dimension
            n = LambdaReduce(lambda x, y, dim=dim: torch.cat((x, y), dim))
            lua_recursive_model(m, n)
            add_submodule(seq, n)
        elif name == 'TorchObject':
            print('Not Implement', name, real._typename)
        else:
            print('Not Implement', name)
コード例 #16
0
    def __init__(self, image_size, num_blocks):
        super(Generator, self).__init__()

        self.in_channels = 3
        self.dim = 64
        self.out_channels = 3
        self.num_blocks = num_blocks
        self.image_size = image_size

        # Down-Sampling #
        down_sampling = []
        down_sampling += [
            nn.ReflectionPad2d(padding=3),
            nn.Conv2d(self.in_channels,
                      self.dim,
                      kernel_size=7,
                      stride=1,
                      padding=0,
                      bias=False),
            nn.InstanceNorm2d(self.dim),
            nn.ReLU(inplace=True)
        ]

        num_down_sampling = 2
        for i in range(num_down_sampling):
            factor = 2**i
            down_sampling += [
                nn.ReflectionPad2d(padding=1),
                nn.Conv2d(self.dim * factor,
                          self.dim * factor * 2,
                          kernel_size=3,
                          stride=2,
                          padding=0,
                          bias=False),
                nn.InstanceNorm2d(self.dim * factor * 2),
                nn.ReLU(inplace=True),
            ]

        factor = 2**num_down_sampling
        for i in range(num_blocks):
            down_sampling += [ResNetBlock(self.dim * factor)]

        self.down_sampling = nn.Sequential(*down_sampling)

        # Class Activation Map (CAM) #
        self.gap_fc = nn.Linear(self.dim * factor, 1, bias=False)
        self.gmp_fc = nn.Linear(self.dim * factor, 1, bias=False)

        self.conv = nn.Sequential(
            nn.Conv2d(self.dim * factor * 2,
                      self.dim * factor,
                      kernel_size=1,
                      stride=1,
                      padding=0,
                      bias=True), nn.ReLU(inplace=True))

        # Block for Gamma and Beta #
        self.fc = nn.Sequential(
            nn.Linear(image_size // factor * image_size // factor * self.dim *
                      factor,
                      self.dim * factor,
                      bias=False), nn.ReLU(inplace=True),
            nn.Linear(self.dim * factor, self.dim * factor, bias=False),
            nn.ReLU(inplace=True))

        self.gamma = nn.Linear(self.dim * factor,
                               self.dim * factor,
                               bias=False)
        self.beta = nn.Linear(self.dim * factor, self.dim * factor, bias=False)

        # Up-Sampling #
        for i in range(num_blocks):
            setattr(self, "UpBlock" + str(i + 1),
                    ResNetAdaLINBlock(self.dim * factor))

        up_sampling = []
        num_up_sampling = 2

        for i in range(num_up_sampling):
            factor = 2**(num_up_sampling - i)
            up_sampling += [
                nn.UpsamplingNearest2d(scale_factor=2),
                nn.ReflectionPad2d(padding=1),
                nn.Conv2d(self.dim * factor,
                          int(self.dim * factor / 2),
                          kernel_size=3,
                          stride=1,
                          padding=0,
                          bias=False),
                ILN(int(self.dim * factor / 2)),
                nn.ReLU(inplace=True)
            ]

        up_sampling += [
            nn.ReflectionPad2d(padding=3),
            nn.Conv2d(self.dim,
                      self.out_channels,
                      kernel_size=7,
                      stride=1,
                      padding=0,
                      bias=False),
            nn.Tanh()
        ]

        self.up_sampling = nn.Sequential(*up_sampling)
コード例 #17
0
ファイル: models.py プロジェクト: IcedDoggie/BEGANPytorch
    def __init__(self, h, n, input_dim=(64, 64, 3)):
        super(D, self).__init__()

        self.n = n
        self.h = h

        channel, width, height = input_dim
        self.blocks = int(np.log2(width) - 2)

        print("[!] {} blocks in D ".format(self.blocks))

        encoder_layers = []
        encoder_layers.append(
            nn.Conv2d(3, n, kernel_size=3, stride=1, padding=1))

        prev_channel_size = n
        for i in range(self.blocks):
            channel_size = (i + 1) * n
            encoder_layers.append(
                nn.Conv2d(prev_channel_size,
                          channel_size,
                          kernel_size=3,
                          stride=1,
                          padding=1))
            encoder_layers.append(nn.ELU())
            encoder_layers.append(
                nn.Conv2d(channel_size,
                          channel_size,
                          kernel_size=3,
                          stride=1,
                          padding=1))
            encoder_layers.append(nn.ELU())

            if i < self.blocks - 1:
                # Downsampling
                encoder_layers.append(
                    nn.Conv2d(channel_size,
                              channel_size,
                              kernel_size=3,
                              stride=2,
                              padding=1))
                encoder_layers.append(nn.ELU())

            prev_channel_size = channel_size

        self.encoder = nn.Sequential(*encoder_layers)

        self.fc_encode = nn.Linear(8 * 8 * self.blocks * n, h)
        self.fc_decode = nn.Linear(h, 8 * 8 * n)

        decoder_layers = []
        for i in range(self.blocks):
            decoder_layers.append(
                nn.Conv2d(n, n, kernel_size=3, stride=1, padding=1))
            decoder_layers.append(nn.ELU())
            decoder_layers.append(
                nn.Conv2d(n, n, kernel_size=3, stride=1, padding=1))
            decoder_layers.append(nn.ELU())

            if i < self.blocks - 1:
                decoder_layers.append(nn.UpsamplingNearest2d(scale_factor=2))

        decoder_layers.append(
            nn.Conv2d(n, channel, kernel_size=3, stride=1, padding=1))
        self.decoder = nn.Sequential(*decoder_layers)
コード例 #18
0
def create_up(in_c, out_c, stride=2, dilation=1):
    model = nn.Sequential(nn.UpsamplingNearest2d(stride, stride),
                          nn.Conv2d(in_c, out_c, 3, 1, (dilation - 1) + 1),
                          nn.BatchNorm2d(out_c), nn.PReLU())
    return model
コード例 #19
0
    def forward(self, x):

        #  Encoder part with  6 Resblock-a  (D6)
        x_conv_1 = self.conv1(x)
        # print(x_conv_1.size())
        x_resblock_1 = self.rest_block_1(x_conv_1)

        x_conv_2 = self.conv2(x_resblock_1)

        # print(f'conv2 size: {x_conv_2.size()}')
        x_resblock_2 = self.rest_block_2(x_conv_2)

        x_conv_3 = self.conv3(x_resblock_2)
        # print(f'conv3 size: {x_conv_3.size()}')
        x_resblock_3 = self.rest_block_3(x_conv_3)

        x_conv_4 = self.conv4(x_resblock_3)
        # print(f'conv4 size: {x_conv_4.size()}')
        x_resblock_4 = self.rest_block_4(x_conv_4)

        x_conv_5 = self.conv5(x_resblock_4)
        # print(f'conv5 size: {x_conv_4.size()}')
        x_resblock_5 = self.rest_block_5(x_conv_5)

        x_conv_6 = self.conv6(x_resblock_5)
        # print(f'conv6 size: {x_conv_5.size()}')
        x_resblock_6 = self.rest_block_6(x_conv_6)

        x_pooling_1 = self.PSPPooling(x_resblock_6)

        #Decoder part  upsampling with combine

        #up5

        # print(f'pooling 1 size : {x_pooling_1.size()}')
        x_convup_1 = self.convup1(x_pooling_1)
        # x_upsampling1 = nn.UpsamplingNearest2d(scale_factor=2)(x_convup_1)
        x_upsampling1 = nn.UpsamplingNearest2d(scale_factor=2)(x_convup_1)

        # print(f'upsampling 1 size: {x_upsampling1.size()}  x_restblock_5 size: {x_resblock_5.size()}')
        x_combine_1 = self.combine1(x_upsampling1, x_resblock_5)
        # print(f'combine 1 output {x_combine_1.size()}')
        x_resblockup_5 = self.rest_block_up_5(x_combine_1)

        #up4
        # print(f'resblockup 5  size : {x_resblockup_5.size()}')
        x_convup_2 = self.convup2(x_resblockup_5)
        # print(f'convup2  size : {x_convup_2.size()}')
        x_upsampling2 = nn.UpsamplingNearest2d(scale_factor=2)(x_convup_2)

        # print(f'x_upsampling2 size : {x_upsampling2.size()} x_resblock_4 size: {x_resblock_4.size()}')
        x_combine_2 = self.combine2(x_upsampling2, x_resblock_4)
        x_resblockup_4 = self.rest_block_up_4(x_combine_2)

        #up3

        x_convup_3 = self.convup3(x_resblockup_4)
        x_upsampling3 = nn.UpsamplingNearest2d(scale_factor=2)(x_convup_3)
        x_combine_3 = self.combine3(x_upsampling3, x_resblock_3)
        x_resblockup_3 = self.rest_block_up_3(x_combine_3)

        #up2
        x_convup_4 = self.convup4(x_resblockup_3)
        x_upsampling4 = nn.UpsamplingNearest2d(scale_factor=2)(x_convup_4)
        x_combine_4 = self.combine4(x_upsampling4, x_resblock_2)
        x_resblockup_2 = self.rest_block_up_2(x_combine_4)

        #up1
        x_convup_5 = self.convup5(x_resblockup_2)
        x_upsampling5 = nn.UpsamplingNearest2d(scale_factor=2)(x_convup_5)
        x_combine_5 = self.combine5(x_upsampling5, x_resblock_1)
        x_resblockup_1 = self.rest_block_up_1(x_combine_5)

        x_combine_6 = self.combine5(x_resblockup_1, x_conv_1)

        # print(f'x_combine6 size: {x_combine_6.size()}')
        x_pooling_2 = self.PSPPoolingResult(x_combine_6)

        x_conv_result = self.conv_final(x_pooling_2)

        return x_conv_result
コード例 #20
0
    def __init__(self,
                 c3,
                 c4,
                 c5,
                 inner_channels,
                 weight_inputs=True,
                 first=False):
        super(BiFPNLayer, self).__init__()
        self.first = first
        if self.first:
            self.c3_latent = nn.Sequential(
                Conv2dDynamicSamePadding(c3, inner_channels, 1),
                nn.BatchNorm2d(inner_channels, momentum=0.01, eps=1e-3))
            self.c4_latent = nn.Sequential(
                Conv2dDynamicSamePadding(c4, inner_channels, 1),
                nn.BatchNorm2d(inner_channels, momentum=0.01, eps=1e-3))

            self.c5_latent = nn.Sequential(
                Conv2dDynamicSamePadding(c5, inner_channels, 1),
                nn.BatchNorm2d(inner_channels, momentum=0.01, eps=1e-3))

            self.c5_to_p6 = nn.Sequential(
                Conv2dDynamicSamePadding(c5, inner_channels, 1),
                nn.BatchNorm2d(inner_channels, momentum=0.01, eps=1e-3),
                MaxPool2dDynamicSamePadding(3, 2))

            self.p6_to_p7 = nn.Sequential(MaxPool2dDynamicSamePadding(3, 2))

            self.c4_latent_re = nn.Sequential(
                Conv2dDynamicSamePadding(c4, inner_channels, 1),
                nn.BatchNorm2d(inner_channels, momentum=0.01, eps=1e-3))

            self.c5_latent_re = nn.Sequential(
                Conv2dDynamicSamePadding(c5, inner_channels, 1),
                nn.BatchNorm2d(inner_channels, momentum=0.01, eps=1e-3))

        self.p6_0 = DWSConv2d(inner_channels, inner_channels, act=False)
        self.p6_0_scale = ScaleWeight(2, requires_grad=weight_inputs)

        self.p5_0 = DWSConv2d(inner_channels, inner_channels, act=False)
        self.p5_0_scale = ScaleWeight(2, requires_grad=weight_inputs)

        self.p4_0 = DWSConv2d(inner_channels, inner_channels, act=False)
        self.p4_0_scale = ScaleWeight(2, requires_grad=weight_inputs)

        self.p3_1 = DWSConv2d(inner_channels, inner_channels, act=False)
        self.p3_1_scale = ScaleWeight(2, requires_grad=weight_inputs)

        self.p4_1 = DWSConv2d(inner_channels, inner_channels, act=False)
        self.p4_1_scale = ScaleWeight(3, requires_grad=weight_inputs)

        self.p5_1 = DWSConv2d(inner_channels, inner_channels, act=False)
        self.p5_1_scale = ScaleWeight(3, requires_grad=weight_inputs)

        self.p6_1 = DWSConv2d(inner_channels, inner_channels, act=False)
        self.p6_1_scale = ScaleWeight(3, requires_grad=weight_inputs)

        self.p7_1 = DWSConv2d(inner_channels, inner_channels, act=False)
        self.p7_1_scale = ScaleWeight(2, requires_grad=weight_inputs)

        self.up_sample = nn.UpsamplingNearest2d(scale_factor=2)
        self.down_sample = MaxPool2dDynamicSamePadding(3, 2)
        self.act = MemoryEfficientSwish()
コード例 #21
0
 def upsample_conv(self, x, conv):
     return conv(nn.UpsamplingNearest2d(scale_factor=2)(x))
コード例 #22
0
    def __init__(self, nc, ngf, ndf, latent_variable_size):
        super(VAE, self).__init__()
        #self.cuda = True
        self.nc = nc
        self.ngf = ngf
        self.ndf = ndf
        self.latent_variable_size = latent_variable_size

        # encoder
        self.e1 = nn.Conv2d(nc, ndf, 4, 2, 1)
        self.bn1 = nn.BatchNorm2d(ndf)

        self.e2 = nn.Conv2d(ndf, ndf * 2, 4, 2, 1)
        self.bn2 = nn.BatchNorm2d(ndf * 2)

        self.e3 = nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1)
        self.bn3 = nn.BatchNorm2d(ndf * 4)

        self.e4 = nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1)
        self.bn4 = nn.BatchNorm2d(ndf * 8)

        self.e5 = nn.Conv2d(ndf * 8, ndf * 16, 4, 2, 1)
        self.bn5 = nn.BatchNorm2d(ndf * 16)

        self.e6 = nn.Conv2d(ndf * 16, ndf * 32, 4, 2, 1)
        self.bn6 = nn.BatchNorm2d(ndf * 32)

        self.e7 = nn.Conv2d(ndf * 32, ndf * 64, 4, 2, 1)
        self.bn7 = nn.BatchNorm2d(ndf * 64)

        self.fc1 = nn.Linear(ndf * 64 * 4 * 4, latent_variable_size)
        self.fc2 = nn.Linear(ndf * 64 * 4 * 4, latent_variable_size)

        # decoder
        self.d1 = nn.Linear(latent_variable_size, ngf * 64 * 4 * 4)

        self.up1 = nn.UpsamplingNearest2d(scale_factor=2)
        self.pd1 = nn.ReplicationPad2d(1)
        self.d2 = nn.Conv2d(ngf * 64, ngf * 32, 3, 1)
        self.bn8 = nn.BatchNorm2d(ngf * 32, 1.e-3)

        self.up2 = nn.UpsamplingNearest2d(scale_factor=2)
        self.pd2 = nn.ReplicationPad2d(1)
        self.d3 = nn.Conv2d(ngf * 32, ngf * 16, 3, 1)
        self.bn9 = nn.BatchNorm2d(ngf * 16, 1.e-3)

        self.up3 = nn.UpsamplingNearest2d(scale_factor=2)
        self.pd3 = nn.ReplicationPad2d(1)
        self.d4 = nn.Conv2d(ngf * 16, ngf * 8, 3, 1)
        self.bn10 = nn.BatchNorm2d(ngf * 8, 1.e-3)

        self.up4 = nn.UpsamplingNearest2d(scale_factor=2)
        self.pd4 = nn.ReplicationPad2d(1)
        self.d5 = nn.Conv2d(ngf * 8, ngf * 4, 3, 1)
        self.bn11 = nn.BatchNorm2d(ngf * 4, 1.e-3)

        self.up5 = nn.UpsamplingNearest2d(scale_factor=2)
        self.pd5 = nn.ReplicationPad2d(1)
        self.d6 = nn.Conv2d(ngf * 4, ngf * 2, 3, 1)
        self.bn12 = nn.BatchNorm2d(ngf * 2, 1.e-3)

        self.up6 = nn.UpsamplingNearest2d(scale_factor=2)
        self.pd6 = nn.ReplicationPad2d(1)
        self.d7 = nn.Conv2d(ngf * 2, ngf, 3, 1)
        self.bn13 = nn.BatchNorm2d(ngf, 1.e-3)

        self.up7 = nn.UpsamplingNearest2d(scale_factor=2)
        self.pd7 = nn.ReplicationPad2d(1)
        self.d8 = nn.Conv2d(ngf, nc, 3, 1)

        self.leakyrelu = nn.LeakyReLU(0.2)
        self.relu = nn.ReLU()
        #self.sigmoid = nn.Sigmoid()
        self.maxpool = nn.MaxPool2d((2, 2), (2, 2))
コード例 #23
0
 def __init__(self, in_, out, scale):
     super().__init__()
     self.up_conv = nn.Conv2d(in_, out, 1)
     self.upsample = nn.UpsamplingNearest2d(scale_factor=scale)
コード例 #24
0
 def __init__(self, previous_in_channels, out_channels, kernel_size):
     super(Decoder,
           self).__init__(previous_in_channels,
                          out_channels,
                          kernel_size,
                          pre_output=nn.UpsamplingNearest2d(scale_factor=2))
コード例 #25
0
ファイル: resnet_ae.py プロジェクト: rronan/IntPhys-Baselines
    def __init__(self, opt, test=False, input_=None, target=None):
        super(Resnet_ae, self).__init__()
        self.__name__ = "resnet_ae"
        # define variables
        bsz = 1 if test else opt.bsz
        if input_ is not None:
            self.input = input_
        else:
            self.input = torch.FloatTensor(bsz * opt.input_len, opt.nc_in, 64,
                                           64)
            self.input = Variable(self.input)
        if target is not None:
            self.target = target
        else:
            self.target = torch.FloatTensor(bsz * opt.target_len, opt.nc_out,
                                            64, 64)
            self.target = Variable(self.target)
        self.criterion = nn.MSELoss()

        if opt.instanceNorm:
            Norm = nn.InstanceNorm2d
        else:
            Norm = nn.BatchNorm2d
        # define model
        self.nc_out = opt.nc_out
        self.latentDim = opt.latentDim
        self.input_len, self.target_len = opt.input_len, opt.target_len
        self.frame_height, self.frame_width = opt.frame_width, opt.frame_height
        resnet = torchvision.models.resnet18(True)
        self.resnet_features = nn.Sequential(*list(resnet.children())[:6])

        middleNL = nn.Sigmoid() if opt.middleNL == "sigmoid" else nn.Tanh()
        self.encoder = nn.Sequential(nn.Linear(128 * 8 * 8, opt.latentDim),
                                     middleNL)
        self.decoder = nn.Linear(opt.input_len * opt.latentDim,
                                 opt.target_len * 128 * 8 * 8)

        self.deconv = nn.Sequential(
            nn.Conv2d(128, opt.nf * 4, 3, 1, 1),
            Norm(opt.nf * 4),
            nn.ReLU(),
            nn.UpsamplingNearest2d(scale_factor=2),
            nn.Conv2d(opt.nf * 4, opt.nf * 2, 3, 1, 1),
            Norm(opt.nf * 2),
            nn.ReLU(),
            nn.UpsamplingNearest2d(scale_factor=2),
            nn.Conv2d(opt.nf * 2, opt.nf, 3, 1, 1),
            Norm(opt.nf),
            nn.ReLU(),
            nn.UpsamplingNearest2d(scale_factor=2),
            nn.Conv2d(opt.nf, opt.target_len * opt.nc_out, 3, 1, 1),
            nn.Sigmoid(),
        )

        # define maskPredictor
        if opt.maskPredictor:
            optmp = {
                "frame_width": opt.frame_width,
                "frame_height": opt.frame_height,
                "input_len": 1,
                "target_len": 1,
                "nc_in": opt.nc_in,
                "nc_out": opt.nc_out,
                "nf": opt.nf,
                "latentDim": 128,
                "instanceNorm": False,
                "middleNL": opt.middleNL,
                "bsz": None,
                "maskPredictor": None,
                "lr": None,
                "beta1": None,
            }
            optmp = utils.to_namespace(optmp)
            self.maskPredictor = Resnet_ae(optmp, False, self.target,
                                           self.target).eval()
            self.maskPredictor.load(opt.maskPredictor)
        else:
            self.maskPredictor = None

        # does this have to be done at the end of __init__ ?
        if opt.lr is not None:
            self.optimizer = optim.Adam(self.parameters(),
                                        lr=opt.lr,
                                        betas=(opt.beta1, 0.999))
コード例 #26
0
    def __init__(self,
                 input_nc,
                 output_nc,
                 ngf=64,
                 norm_layer=nn.BatchNorm2d,
                 use_dropout=False,
                 n_blocks=6,
                 gpu_ids=[],
                 padding_type='reflect',
                 upsample=False):
        assert (n_blocks >= 0)
        super(ResnetGenerator, self).__init__()
        self.input_nc = input_nc
        self.output_nc = output_nc
        self.ngf = ngf
        self.gpu_ids = gpu_ids
        if type(norm_layer) == functools.partial:
            use_bias = norm_layer.func == nn.InstanceNorm2d
        else:
            use_bias = norm_layer == nn.InstanceNorm2d
        model = [
            nn.ReflectionPad2d(3),
            nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0, bias=use_bias),
            norm_layer(ngf),
            nn.ReLU(True)
        ]
        n_downsampling = 2
        for i in range(n_downsampling - 1):
            mult = 2**i
            model += [
                nn.Conv2d(ngf * mult,
                          ngf * mult * 2,
                          kernel_size=3,
                          stride=2,
                          padding=1,
                          bias=use_bias),
                norm_layer(ngf * mult * 2),
                nn.ReLU(True)
            ]

        mult = 2**(n_downsampling - 1)
        model += [
            nn.Conv2d(ngf * mult,
                      ngf * mult * 2,
                      kernel_size=3,
                      stride=2,
                      padding=1,
                      bias=use_bias)
        ]

        mult = 2**n_downsampling
        for i in range(n_blocks):
            model += [
                ResnetBlock(ngf * mult,
                            padding_type=padding_type,
                            norm_layer=norm_layer,
                            use_dropout=use_dropout,
                            use_bias=use_bias)
            ]
        model += [norm_layer(ngf * mult), nn.ReLU(True)]
        for i in range(n_downsampling):
            mult = 2**(n_downsampling - i)
            if upsample:
                model += [
                    nn.UpsamplingNearest2d(scale_factor=2),
                    nn.ReflectionPad2d(1),
                    nn.Conv2d(ngf * mult,
                              int(ngf * mult / 2),
                              kernel_size=3,
                              bias=use_bias)
                ]
            else:
                model += [
                    nn.ConvTranspose2d(ngf * mult,
                                       int(ngf * mult / 2),
                                       kernel_size=3,
                                       stride=2,
                                       padding=1,
                                       output_padding=1,
                                       bias=use_bias)
                ]
            model += [norm_layer(int(ngf * mult / 2)), nn.ReLU(True)]
        model += [nn.ReflectionPad2d(3)]
        model += [nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)]
        model += [nn.Tanh()]

        self.model = nn.Sequential(*model)
コード例 #27
0
    def __init__(self,
                 imsize=(1, 28, 28),
                 outsize=None,
                 s=32,
                 mean=None,
                 std=None):
        super(ConvNet, self).__init__()
        print("Version 0.6")
        pow_pad = (2**(int(np.ceil(np.log2(imsize[-2])))) - imsize[-2],
                   2**(int(np.ceil(np.log2(imsize[-1])))) - imsize[-1])
        kern_size = 4 * ((imsize[1] + pow_pad[0]) // 16) * (
            (imsize[2] + pow_pad[1]) // 16) * s
        print("Additional padding to fit 2 exp:", pow_pad)
        print("Kern size:", kern_size)
        self.imsize = imsize
        if outsize is None:
            self.outsize = imsize
        else:
            self.outsize = outsize

        if mean is None:
            self.register_buffer('mean', torch.zeros(imsize))
        else:
            self.register_buffer('mean', torch.Tensor(mean))

        if std is None:
            self.register_buffer('std', torch.ones(imsize))
        else:
            self.register_buffer('std', torch.Tensor(std))

        self.layers = nn.Sequential(
            nn.Conv2d(imsize[0], imsize[0], kernel_size=1,
                      padding=pow_pad),  #32x32x1 = 1024
            nn.BatchNorm2d(imsize[0]),
            nn.ReLU(),
            nn.Conv2d(imsize[0], 1 * s, kernel_size=5,
                      padding=2),  #32x32x32 = 32768
            nn.BatchNorm2d(1 * s),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2),  #16x16x32 = 8192
            nn.Conv2d(1 * s, 2 * s, kernel_size=3, padding=1),
            nn.BatchNorm2d(2 * s),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2),  # 8x8x64 = 4096
            nn.Conv2d(2 * s, 4 * s, kernel_size=3, padding=1),
            nn.BatchNorm2d(4 * s),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2),  # 4x4x128 = 2048
            nn.Conv2d(4 * s, 4 * s, kernel_size=3, padding=1),
            nn.BatchNorm2d(4 * s),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2),  # 2x2x128 = 512
            KernModule(h=kern_size),
            nn.UpsamplingNearest2d(scale_factor=2),
            nn.ConvTranspose2d(4 * s, 4 * s, kernel_size=3, padding=1),
            nn.BatchNorm2d(4 * s),
            nn.ReLU(),
            nn.UpsamplingNearest2d(scale_factor=2),
            nn.ConvTranspose2d(4 * s, 2 * s, kernel_size=3, padding=1),
            nn.BatchNorm2d(2 * s),
            nn.ReLU(),
            nn.UpsamplingNearest2d(scale_factor=2),
            nn.ConvTranspose2d(2 * s, 1 * s, kernel_size=3, padding=1),
            nn.BatchNorm2d(1 * s),
            nn.ReLU(),
            nn.UpsamplingNearest2d(scale_factor=2),
            nn.ConvTranspose2d(1 * s,
                               self.outsize[0],
                               kernel_size=5,
                               padding=2),
            nn.Sigmoid())
コード例 #28
0
    def __init__(self,
                 input_nc,
                 output_nc,
                 ngf=64,
                 norm_layer=nn.BatchNorm2d,
                 use_dropout=False,
                 n_blocks=6,
                 gpu_ids=[],
                 padding_type='reflect',
                 multisa=False,
                 upsample=False):
        assert (n_blocks >= 0)
        super(ResnetDecoder, self).__init__()
        self.input_nc = input_nc
        self.output_nc = output_nc
        self.ngf = ngf
        self.gpu_ids = gpu_ids
        self.saliency = multisa
        usesa = 1 if multisa else 0
        if type(norm_layer) == functools.partial:
            use_bias = norm_layer.func == nn.InstanceNorm2d
        else:
            use_bias = norm_layer == nn.InstanceNorm2d
        model = []
        n_downsampling = 2
        mult = 2**n_downsampling
        for i in range(n_blocks):
            model += [
                ResnetBlock(ngf * mult,
                            padding_type=padding_type,
                            norm_layer=norm_layer,
                            use_dropout=use_dropout,
                            use_bias=use_bias)
            ]
        for i in range(n_downsampling):
            mult = 2**(n_downsampling - i)
            if upsample:
                model += [
                    nn.UpsamplingNearest2d(scale_factor=2),
                    nn.ReflectionPad2d(1),
                    nn.Conv2d(ngf * mult + usesa,
                              int(ngf * mult / 2),
                              kernel_size=3,
                              bias=use_bias)
                ]
            else:
                model += [
                    nn.ConvTranspose2d(ngf * mult + usesa,
                                       int(ngf * mult / 2),
                                       kernel_size=3,
                                       stride=2,
                                       padding=1,
                                       output_padding=1,
                                       bias=use_bias)
                ]
            model += [norm_layer(int(ngf * mult / 2)), nn.ReLU(True)]
        model += [nn.ReflectionPad2d(3)]
        model += [nn.Conv2d(ngf + usesa, output_nc, kernel_size=7, padding=0)]
        model += [nn.Tanh()]

        self.model = nn.ModuleList(model)
コード例 #29
0
ファイル: modelsNIPS.py プロジェクト: BakerSmithA/PytorchWCT
    def __init__(self, d):
        super(decoder4, self).__init__()
        # decoder
        self.reflecPad11 = nn.ReflectionPad2d((1, 1, 1, 1))
        self.conv11 = nn.Conv2d(512, 256, 3, 1, 0)
        self.conv11.weight = torch.nn.Parameter(
            torch.from_numpy(d.modules[1].weight).float())
        self.conv11.bias = torch.nn.Parameter(
            torch.from_numpy(d.modules[1].bias).float())
        self.relu11 = nn.ReLU(inplace=True)
        # 28 x 28

        self.unpool = nn.UpsamplingNearest2d(scale_factor=2)
        # 56 x 56

        self.reflecPad12 = nn.ReflectionPad2d((1, 1, 1, 1))
        self.conv12 = nn.Conv2d(256, 256, 3, 1, 0)
        self.conv12.weight = torch.nn.Parameter(
            torch.from_numpy(d.modules[5].weight).float())
        self.conv12.bias = torch.nn.Parameter(
            torch.from_numpy(d.modules[5].bias).float())
        self.relu12 = nn.ReLU(inplace=True)
        # 56 x 56

        self.reflecPad13 = nn.ReflectionPad2d((1, 1, 1, 1))
        self.conv13 = nn.Conv2d(256, 256, 3, 1, 0)
        self.conv13.weight = torch.nn.Parameter(
            torch.from_numpy(d.modules[8].weight).float())
        self.conv13.bias = torch.nn.Parameter(
            torch.from_numpy(d.modules[8].bias).float())
        self.relu13 = nn.ReLU(inplace=True)
        # 56 x 56

        self.reflecPad14 = nn.ReflectionPad2d((1, 1, 1, 1))
        self.conv14 = nn.Conv2d(256, 256, 3, 1, 0)
        self.conv14.weight = torch.nn.Parameter(
            torch.from_numpy(d.modules[11].weight).float())
        self.conv14.bias = torch.nn.Parameter(
            torch.from_numpy(d.modules[11].bias).float())
        self.relu14 = nn.ReLU(inplace=True)
        # 56 x 56

        self.reflecPad15 = nn.ReflectionPad2d((1, 1, 1, 1))
        self.conv15 = nn.Conv2d(256, 128, 3, 1, 0)
        self.conv15.weight = torch.nn.Parameter(
            torch.from_numpy(d.modules[14].weight).float())
        self.conv15.bias = torch.nn.Parameter(
            torch.from_numpy(d.modules[14].bias).float())
        self.relu15 = nn.ReLU(inplace=True)
        # 56 x 56

        self.unpool2 = nn.UpsamplingNearest2d(scale_factor=2)
        # 112 x 112

        self.reflecPad16 = nn.ReflectionPad2d((1, 1, 1, 1))
        self.conv16 = nn.Conv2d(128, 128, 3, 1, 0)
        self.conv16.weight = torch.nn.Parameter(
            torch.from_numpy(d.modules[18].weight).float())
        self.conv16.bias = torch.nn.Parameter(
            torch.from_numpy(d.modules[18].bias).float())
        self.relu16 = nn.ReLU(inplace=True)
        # 112 x 112

        self.reflecPad17 = nn.ReflectionPad2d((1, 1, 1, 1))
        self.conv17 = nn.Conv2d(128, 64, 3, 1, 0)
        self.conv17.weight = torch.nn.Parameter(
            torch.from_numpy(d.modules[21].weight).float())
        self.conv17.bias = torch.nn.Parameter(
            torch.from_numpy(d.modules[21].bias).float())
        self.relu17 = nn.ReLU(inplace=True)
        # 112 x 112

        self.unpool3 = nn.UpsamplingNearest2d(scale_factor=2)
        # 224 x 224

        self.reflecPad18 = nn.ReflectionPad2d((1, 1, 1, 1))
        self.conv18 = nn.Conv2d(64, 64, 3, 1, 0)
        self.conv18.weight = torch.nn.Parameter(
            torch.from_numpy(d.modules[25].weight).float())
        self.conv18.bias = torch.nn.Parameter(
            torch.from_numpy(d.modules[25].bias).float())
        self.relu18 = nn.ReLU(inplace=True)
        # 224 x 224

        self.reflecPad19 = nn.ReflectionPad2d((1, 1, 1, 1))
        self.conv19 = nn.Conv2d(64, 3, 3, 1, 0)
        self.conv19.weight = torch.nn.Parameter(
            torch.from_numpy(d.modules[28].weight).float())
        self.conv19.bias = torch.nn.Parameter(
            torch.from_numpy(d.modules[28].bias).float())
コード例 #30
0
    def create_network(self, blocks):
        models = nn.ModuleList()

        prev_filters = 3
        out_filters = []
        conv_id = 0
        for block in blocks:
            if block['type'] == 'net':
                prev_filters = int(block['channels'])
                continue
            elif block['type'] == 'convolutional':
                conv_id = conv_id + 1
                batch_normalize = int(block['batch_normalize'])
                filters = int(block['filters'])
                kernel_size = int(block['size'])
                stride = int(block['stride'])
                is_pad = int(block['pad'])
                pad = (kernel_size - 1) // 2 if is_pad else 0
                activation = block['activation']
                model = nn.Sequential()
                if batch_normalize:
                    model.add_module(
                        'conv{0}'.format(conv_id),
                        nn.Conv2d(prev_filters,
                                  filters,
                                  kernel_size,
                                  stride,
                                  pad,
                                  bias=False))
                    model.add_module('bn{0}'.format(conv_id),
                                     nn.BatchNorm2d(filters, eps=1e-4))
                    #model.add_module('bn{0}'.format(conv_id), BN2d(filters))
                else:
                    model.add_module(
                        'conv{0}'.format(conv_id),
                        nn.Conv2d(prev_filters, filters, kernel_size, stride,
                                  pad))
                if activation == 'leaky':
                    model.add_module('leaky{0}'.format(conv_id),
                                     nn.LeakyReLU(0.1, inplace=True))
                elif activation == 'relu':
                    model.add_module('relu{0}'.format(conv_id),
                                     nn.ReLU(inplace=True))
                prev_filters = filters
                out_filters.append(prev_filters)
                models.append(model)
            elif block['type'] == 'maxpool':
                pool_size = int(block['size'])
                stride = int(block['stride'])
                if stride > 1:
                    model = nn.MaxPool2d(pool_size, stride)
                else:
                    model = MaxPoolStride1()
                out_filters.append(prev_filters)
                models.append(model)
            elif block['type'] == 'avgpool':
                model = GlobalAvgPool2d()
                out_filters.append(prev_filters)
                models.append(model)
            elif block['type'] == 'softmax':
                model = nn.Softmax()
                out_filters.append(prev_filters)
                models.append(model)
            elif block['type'] == 'cost':
                if block['_type'] == 'sse':
                    model = nn.MSELoss(size_average=True)
                elif block['_type'] == 'L1':
                    model = nn.L1Loss(size_average=True)
                elif block['_type'] == 'smooth':
                    model = nn.SmoothL1Loss(size_average=True)
                out_filters.append(1)
                models.append(model)
            elif block['type'] == 'reorg':
                stride = int(block['stride'])
                prev_filters = stride * stride * prev_filters
                out_filters.append(prev_filters)
                models.append(Reorg(stride))
            elif block['type'] == 'route':
                layers = block['layers'].split(',')
                ind = len(models)
                layers = [
                    int(i) if int(i) > 0 else int(i) + ind for i in layers
                ]
                if len(layers) == 1:
                    prev_filters = out_filters[layers[0]]
                elif len(layers) == 2:
                    assert (layers[0] == ind - 1)
                    prev_filters = out_filters[layers[0]] + out_filters[
                        layers[1]]
                out_filters.append(prev_filters)
                models.append(EmptyModule())
            elif block['type'] == 'shortcut':
                ind = len(models)
                prev_filters = out_filters[ind - 1]
                out_filters.append(prev_filters)
                models.append(EmptyModule())
            elif block['type'] == 'connected':
                filters = int(block['output'])
                if block['activation'] == 'linear':
                    model = nn.Linear(prev_filters, filters)
                elif block['activation'] == 'leaky':
                    model = nn.Sequential(nn.Linear(prev_filters, filters),
                                          nn.LeakyReLU(0.1, inplace=True))
                elif block['activation'] == 'relu':
                    model = nn.Sequential(nn.Linear(prev_filters, filters),
                                          nn.ReLU(inplace=True))
                prev_filters = filters
                out_filters.append(prev_filters)
                models.append(model)
            elif block['type'] == 'region':
                if self.distiling:
                    loss = DistiledRegionLoss()
                else:
                    loss = RegionLoss()
                anchors = block['anchors'].split(',')
                if anchors == ['']:
                    loss.anchors = []
                else:
                    loss.anchors = [float(i) for i in anchors]
                loss.num_classes = int(block['classes'])
                loss.num_anchors = int(block['num'])
                loss.anchor_step = len(loss.anchors) // loss.num_anchors
                loss.object_scale = float(block['object_scale'])
                loss.noobject_scale = float(block['noobject_scale'])
                loss.class_scale = float(block['class_scale'])
                loss.coord_scale = float(block['coord_scale'])
                out_filters.append(prev_filters)
                models.append(loss)
            elif block['type'] == 'upsample':
                model = nn.UpsamplingNearest2d(
                    scale_factor=int(block['stride']))
                out_filters.append(prev_filters)
                models.append(model)
            else:
                print('unknown type %s' % (block['type']))

        return models