コード例 #1
0
def unfold(g, input, dimension, size, step):
    const_size = sym_help._maybe_get_const(size, "i")
    const_step = sym_help._maybe_get_const(step, "i")
    if not sym_help._is_value(const_size) and not sym_help._is_value(const_step):
        from torch.onnx.symbolic_opset9 import unfold as _unfold
        return _unfold(g, input, dimension, const_size, const_step)
    if sym_help._operator_export_type == torch.onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK:
        return g.op("ATen", input, operator_s="unfold", dimension_i=dimension, size_i=size, step_i=step)

    sizedim = sym_help._get_tensor_dim_size(input, dimension)
    if sizedim is not None:
        low_start = g.op("Constant", value_t=torch.tensor(0))
        low_end = g.op("Constant", value_t=torch.tensor(sizedim))
        hi_end = g.op("Constant", value_t=torch.tensor(sizedim + 1))
        low_indices = g.op("Range", low_start, low_end, step)
        hi_indices = g.op("Range", size, hi_end, step)

        low_size = sym_help._size_helper(g, low_indices, g.op("Constant", value_t=torch.tensor(0)))
        hi_size = sym_help._size_helper(g, hi_indices, g.op("Constant", value_t=torch.tensor(0)))

        ndim = sym_help._get_tensor_rank(input)
        perm = list(range(0, ndim))
        perm.append(perm.pop(dimension))

        unsqueeze_list = []
        loop_condition = g.op("Constant", value_t=torch.tensor(1))
        loop_condition = g.op("Cast", loop_condition, to_i=9)
        loop_len = g.op("Min", low_size, hi_size)
        loop = g.op("Loop", loop_len, loop_condition)

        loop_block = _add_block(loop.node())
        block_input_iter = _add_input_to_block(loop_block)
        cond = _add_input_to_block(loop_block)

        starts = loop_block.op("Gather", low_indices, block_input_iter)
        ends = loop_block.op("Gather", hi_indices, block_input_iter)
        axes = loop_block.op("Constant", value_t=torch.tensor([2]))
        starts = sym_help._unsqueeze_helper(loop_block, starts, [0])
        ends = sym_help._unsqueeze_helper(loop_block, ends, [0])
        stack = loop_block.op("Slice", input, starts, ends, axes)

        unsqueeze = sym_help._unsqueeze_helper(loop_block, loop_block.op("Transpose", stack, perm_i=perm), [dimension])
        unsqueeze_list.append(unsqueeze)
        concat = loop_block.op("Concat", *unsqueeze_list, axis_i=0)

        cond_out = loop_block.op("Cast", loop_condition, to_i=9)
        _add_output_to_block(loop_block, cond_out)
        _add_output_to_block(loop_block, concat)

        loop_output = loop.node().output()
        perm = [0, 1, 2, 3, 4]
        perm[0], perm[dimension + 1] = perm[dimension + 1], perm[0]
        transpose = g.op("Transpose", loop_output, perm_i=perm)
        squeeze = sym_help._squeeze_helper(g, transpose, [0])

        return squeeze
    else:
        return _unimplemented("Unfold", "input size not accessible")
コード例 #2
0
ファイル: symbolic.py プロジェクト: dqawami/mmdetection
def nms_core_symbolic(g, dets, iou_thr, score_thr, max_num):

    from torch.onnx.symbolic_opset9 import reshape, unsqueeze, squeeze
    from torch.onnx.symbolic_opset10 import _slice

    assert 0 <= iou_thr <= 1
    multi_bboxes = _slice(g, dets, axes=[1], starts=[0], ends=[4])
    # multi_bboxes = unsqueeze(g, multi_bboxes, 0)
    multi_bboxes = reshape(g, multi_bboxes, [1, -1, 4])
    multi_scores = _slice(g, dets, axes=[1], starts=[4], ends=[5])
    multi_scores = reshape(g, multi_scores, [1, 1, -1])

    assert max_num > 0

    indices = g.op('NonMaxSuppression', multi_bboxes, multi_scores,
                   g.op('Constant', value_t=torch.LongTensor([max_num])),
                   g.op('Constant', value_t=torch.FloatTensor([iou_thr])),
                   g.op('Constant', value_t=torch.FloatTensor([score_thr])))
    indices = squeeze(g, _slice(g, indices, axes=[1], starts=[2], ends=[3]), 1)

    # Sort indices by score.
    scores = reshape(g, multi_scores, [
        -1,
    ])
    keeped_scores = g.op('Gather', scores, indices, axis_i=0)
    elements_num = sym_help._size_helper(g,
                                         keeped_scores,
                                         dim=g.op('Constant',
                                                  value_t=torch.LongTensor(
                                                      [0])))
    _, order = sym_help._topk_helper(g, keeped_scores, elements_num, dim=0)
    indices = g.op('Gather', indices, order, axis_i=0)

    return indices
コード例 #3
0
def squeeze(g, self, dim=None):
    if dim is None:
        return g.op("Squeeze", self)

    # dim as a tensor
    if not symbolic_helper._is_constant(dim):
        return symbolic_helper._squeeze_helper(g, self, [dim])

    dim = symbolic_helper._get_const(dim, "i", "dim")

    input_rank = symbolic_helper._get_tensor_rank(self)
    adjusted_dim = dim
    if input_rank is not None and dim < 0:
        adjusted_dim += input_rank
    dim_size = symbolic_helper._get_tensor_dim_size(self, adjusted_dim)
    if (dim < 0 and input_rank is None) or dim_size is None:
        # If onnx shape inference is not on, export always as dynamic.
        # Because we cannot tell if observed static shape is also static at runtime.
        # create "cond" node (condition is shape[i]==1)
        dim_constant = g.op("Constant", value_t=torch.tensor([dim]))
        size = symbolic_helper._size_helper(g, self, dim_constant)
        const_one = g.op("Constant", value_t=torch.ones(1, dtype=torch.int64))
        cond = g.op("Equal", size, const_one)
        # create the "If" node and add the "then" and "else" blocks to it.
        if_node_outputs = g.op("If", cond)
        if_node = if_node_outputs.node()
        if_block = utils._add_block(if_node)
        squeeze_ = symbolic_helper._squeeze_helper(if_block, self, [dim])
        utils._add_output_to_block(if_block, squeeze_)
        else_block = utils._add_block(if_node)
        identity_ = else_block.op("Identity", self)
        utils._add_output_to_block(else_block, identity_)
        return if_node_outputs

    # For static input shape
    dim = adjusted_dim
    if dim_size > 1:
        warnings.warn(
            "This model contains a squeeze operation on dimension "
            + str(dim)
            + ". The size of "
            + "this dimension in the given input is "
            + str(dim_size)
            + ". The model will "
            + "be exported without the squeeze node. If the model is intended to be used with dynamic "
            + "input shapes, please export with dynamic_axes argument."
        )
        return self
    return symbolic_helper._squeeze_helper(g, self, [dim])
コード例 #4
0
def squeeze(g, self, dim=None):
    if dim is None:
        return g.op("Squeeze", self)

    dim = sym_help._get_const(dim, 'i', 'dim')

    # create 'cond' node (condition is shape[i]==1)
    dim_constant = g.op("Constant", value_t=torch.tensor([dim]))
    size = sym_help._size_helper(g, self, dim_constant)
    const_one = g.op("Constant", value_t=torch.ones(1, dtype=torch.int64))
    cond = g.op("Equal", size, const_one)
    # create the 'If' node and add the 'then' and 'else' blocks to it.
    if_node_outputs = g.op("If", cond)
    if_node = if_node_outputs.node()
    torch.onnx.utils._add_block(if_node, self, "onnx::Squeeze", axes_i=[dim])
    torch.onnx.utils._add_block(if_node, self, "onnx::Identity")
    return if_node_outputs
コード例 #5
0
def squeeze(g, self, dim=None):
    if dim is None:
        return g.op("Squeeze", self)

    dim = sym_help._get_const(dim, 'i', 'dim')

    input_shape = self.type().sizes()
    from torch.onnx.symbolic_helper import _onnx_shape_inference
    if input_shape is None or not _onnx_shape_inference:
        # If onnx shape inference is not on, export always as dynamic.
        # Because we cannot tell if observed static shape is also static at runtime.
        # create 'cond' node (condition is shape[i]==1)
        dim_constant = g.op("Constant", value_t=torch.tensor([dim]))
        size = sym_help._size_helper(g, self, dim_constant)
        const_one = g.op("Constant", value_t=torch.ones(1, dtype=torch.int64))
        cond = g.op("Equal", size, const_one)
        # create the 'If' node and add the 'then' and 'else' blocks to it.
        if_node_outputs = g.op("If", cond)
        if_node = if_node_outputs.node()
        if_block = torch.onnx.utils._add_block(if_node)
        squeeze_ = if_block.op("Squeeze", self, axes_i=[dim])
        torch.onnx.utils._add_output_to_block(if_block, squeeze_)
        else_block = torch.onnx.utils._add_block(if_node)
        identity_ = else_block.op("Identity", self)
        torch.onnx.utils._add_output_to_block(else_block, identity_)
        return if_node_outputs

    # For static input shape
    if dim < 0:
        dim += self.type().dim()
    if input_shape[dim] > 1:
        warnings.warn(
            "This model contains a squeeze operation on dimension " +
            str(dim) + ". The size of " +
            "this dimension in the given input is " + str(input_shape[dim]) +
            ". The model will " +
            "be exported without the squeeze node. If the model is intended to be used with dynamic "
            + "input shapes, please export with dynamic_axes argument.")
        return self
    return g.op("Squeeze", self, axes_i=[dim])
コード例 #6
0
def embedding_bag(g, embedding_matrix, indices, offsets, scale_grad_by_freq,
                  mode, sparse, per_sample_weights, include_last_offset,
                  padding_idx):
    if scale_grad_by_freq and sym_help._training_mode:
        return sym_help._onnx_unsupported(
            'embedding_bag with scale_grad_by_freq for training mode')
    if padding_idx is not None and padding_idx >= 0:
        raise RuntimeError('embedding_bag with padding_idx')

    loop_condition = g.op("Constant", value_t=torch.tensor(1))
    loop_condition = g.op("Cast", loop_condition, to_i=9)
    zero = g.op("Constant", value_t=torch.tensor([0]))

    indices_len = sym_help._unsqueeze_helper(
        g,
        sym_help._size_helper(g, indices,
                              g.op("Constant", value_t=torch.tensor(0))), [0])
    if not include_last_offset:
        offsets = [offsets, indices_len]
        offsets = g.op("Concat", *offsets, axis_i=0)

    # Offsets holds the starting index position of each bag. So we create a list of the indices slices (determined by
    # offsets) and gather those indices in indices_row. Then we use this subset of indices to gather from embeddings.
    # The embeddings output is a loop scan output, so we can avoid creating a sequence and inserting elements in.
    offsets_starts = sym_help._slice_helper(g,
                                            offsets,
                                            axes=[0],
                                            starts=[0],
                                            ends=[maxsize],
                                            steps=[1])
    offsets_ends = sym_help._slice_helper(g,
                                          offsets,
                                          axes=[0],
                                          starts=[1],
                                          ends=[maxsize],
                                          steps=[1])

    loop_len = sym_help._size_helper(g, offsets_ends,
                                     g.op("Constant", value_t=torch.tensor(0)))
    loop = g.op("Loop", loop_len, loop_condition)

    loop_block = _add_block(loop.node())
    block_input_iter = _add_input_to_block(loop_block)
    cond = _add_input_to_block(loop_block)

    indices_start = loop_block.op("Gather",
                                  offsets_starts,
                                  block_input_iter,
                                  axis_i=0)
    indices_end = loop_block.op("Gather",
                                offsets_ends,
                                block_input_iter,
                                axis_i=0)
    indices_start = sym_help._unsqueeze_helper(loop_block, indices_start, [0])
    indices_end = sym_help._unsqueeze_helper(loop_block, indices_end, [0])

    indices_row = loop_block.op("Slice", indices, indices_start, indices_end,
                                zero)
    embeddings = loop_block.op("Gather",
                               embedding_matrix,
                               indices_row,
                               axis_i=0)
    if not sym_help._is_none(per_sample_weights):
        per_sample_weights_row = loop_block.op("Slice", per_sample_weights,
                                               indices_start, indices_end,
                                               zero)
        per_sample_weights_row = sym_help._unsqueeze_helper(
            loop_block, per_sample_weights_row, [1])
        embeddings = loop_block.op("Mul", embeddings, per_sample_weights_row)
    if mode == 0:
        embeddings = sym_help._reducesum_helper(loop_block,
                                                embeddings,
                                                axes_i=[0],
                                                keepdims_i=0)
    elif mode == 1:
        embeddings = loop_block.op("ReduceMean",
                                   embeddings,
                                   axes_i=[0],
                                   keepdims_i=0)
    else:
        embeddings = loop_block.op("ReduceMax",
                                   embeddings,
                                   axes_i=[0],
                                   keepdims_i=0)

    cond_out = loop_block.op("Cast", loop_condition, to_i=9)
    _add_output_to_block(loop_block, cond_out)
    _add_output_to_block(loop_block, embeddings)

    # aten::embedding_bag returns a tuple of 4 elements: output, offset2bag, bag_size, max_indices.
    # But the last three outputs are not used in torch.nn.EmbeddingBag or torch.nn.functional.embedding_bag.
    return loop.node().output(), None, None, None
コード例 #7
0
def size(g, self, dim=None):
    if dim is None:
        return g.op("Shape", self)
    return sym_help._size_helper(g, self, dim)
コード例 #8
0
def repeat_interleave(g, self, repeats, dim=None):
    from torch.onnx.symbolic_opset9 import reshape
    input = self
    final_dim = dim
    # if dim is None flatten
    # By default, use the flattened input array, and return a flat output array
    if sym_help._is_none(dim):
        input = reshape(g, self, g.op("Constant", value_t=torch.tensor([-1])))
        dim = 0
    else:
        dim = sym_help._maybe_get_scalar(dim)

    repeats_dim = sym_help._get_tensor_rank(repeats)
    repeats_sizes = sym_help._get_tensor_sizes(repeats)
    input_sizes = sym_help._get_tensor_sizes(input)
    if repeats_dim is None:
        raise RuntimeError(
            'Unsupported: ONNX export of repeat_interleave for unknown '
            'repeats rank.')
    if repeats_sizes is None:
        raise RuntimeError(
            'Unsupported: ONNX export of repeat_interleave for unknown '
            'repeats size.')
    if input_sizes is None:
        raise RuntimeError(
            'Unsupported: ONNX export of repeat_interleave for unknown '
            'input size.')
    # Handle cases where dim is negative
    if dim < 0:
        dim += len(input_sizes)

    output_sizes = input_sizes.copy()
    perm_i = [0]
    for idx, input_size in enumerate(input_sizes):
        perm_i.append(idx + 1)
        if input_size is None:
            output_sizes[idx], input_sizes[idx] = 0, -1
    perm_i[0], perm_i[dim] = perm_i[dim], perm_i[0]

    # Cases when repeats is a single value tensor and dim has unknown input size
    if (repeats_dim == 0 or
        (repeats_dim == 1
         and repeats_sizes[0] == 1)) and output_sizes[dim] == 0:
        if not sym_help._is_tensor(repeats):
            repeats = g.op("Constant", value_t=torch.LongTensor(repeats))
        reps = sym_help._size_helper(g, input, dim)
        reps = unsqueeze(g, reps, 0)
        repeats = g.op("Expand", repeats, reps)
    # There are cases when the repeats are 1-d tensor with multiple repeats, but dim
    # provided along one of the dynamic axes provided. A simple example would be
    # input.shape -> [1, 1, *] where * represents the dynamic axes, and dim = 2
    # Now, repeat interleaving can be performed in pytorch when the value of * matches
    # with the number of elements in repeat, for example if * -> 2, number of repeats
    # should be 2 as well.
    else:
        return torch.onnx.symbolic_opset9.repeat_interleave(
            g, self, repeats, final_dim)

    reps_like = g.op("ConstantOfShape",
                     g.op("Shape", repeats),
                     value_t=torch.tensor([1], dtype=torch.long))
    r_splits = split(g, repeats, reps_like, 0)
    i_splits = split(g, input, reps_like, dim)

    output_sizes[dim], input_sizes[dim] = -1, 1

    # Create a loop to iterate over each value along the dimension
    # and perform individual interleaving using the repeats tensor
    # Loop is of the following pattern
    # input (trip_count, cond)
    #   int trip_count = ...;
    #   bool cond = ...;
    #   for (int i=0; i < trip_count && cond; ++i) {
    #     cond = ...;
    #   }

    # Loop conditions
    loop_condition = g.op("Constant", value_t=torch.tensor(1))
    loop_condition = g.op("Cast", loop_condition, to_i=9)
    loop_len = reps
    loop = g.op("Loop", loop_len, loop_condition)

    # Loop inputs
    loop_block = _add_block(loop.node())
    block_input_iter = _add_input_to_block(loop_block)
    cond = _add_input_to_block(loop_block)

    r_split = loop_block.op("SequenceAt", r_splits, block_input_iter)
    i_split = loop_block.op("SequenceAt", i_splits, block_input_iter)

    i_split = unsqueeze(loop_block, i_split, dim + 1)
    r_concat = [
        loop_block.op("Constant",
                      value_t=torch.LongTensor(input_sizes[:dim + 1])),
        r_split,
        loop_block.op("Constant",
                      value_t=torch.LongTensor(input_sizes[dim + 1:]))
    ]
    r_concat = loop_block.op("Concat", *r_concat, axis_i=0)
    i_split = expand(loop_block, i_split, r_concat, None)
    i_split = reshape(loop_block, i_split,
                      g.op("Constant", value_t=torch.LongTensor(output_sizes)))

    # Loop outputs
    cond_out = loop_block.op("Cast", loop_condition, to_i=9)
    _add_output_to_block(loop_block, cond_out)
    _add_output_to_block(loop_block, i_split)
    loop_out = loop.node().output()

    # In this loop, the outputs are scan outputs and are concatenated along
    # the zero'th dimension (by default). In order to avoid this and concatenate
    # along the dimension provided, some post-processing is required
    loop_out = g.op("Transpose", loop_out, perm_i=perm_i)
    return reshape(g, loop_out,
                   g.op("Constant", value_t=torch.LongTensor(output_sizes)))
コード例 #9
0
ファイル: symbolic_opset11.py プロジェクト: zonghaofan/DBFace
def size(g, self, dim):
    return sym_help._size_helper(g, self, dim)
コード例 #10
0
ファイル: symbolic_opset13.py プロジェクト: xsacha/pytorch
def repeat_interleave(g, self, repeats, dim=None, output_size=None):
    input = self
    final_dim = dim
    # if dim is None flatten
    # By default, use the flattened input array, and return a flat output array
    if sym_help._is_none(dim):
        input = sym_help._reshape_helper(
            g, self, g.op("Constant", value_t=torch.tensor([-1])))
        dim = 0
    else:
        dim = sym_help._maybe_get_scalar(dim)

    repeats_dim = sym_help._get_tensor_rank(repeats)
    repeats_sizes = sym_help._get_tensor_sizes(repeats)
    input_sizes = sym_help._get_tensor_sizes(input)
    if repeats_dim is None:
        raise RuntimeError(
            "Unsupported: ONNX export of repeat_interleave for unknown "
            "repeats rank.")
    if repeats_sizes is None:
        raise RuntimeError(
            "Unsupported: ONNX export of repeat_interleave for unknown "
            "repeats size.")
    if input_sizes is None:
        raise RuntimeError(
            "Unsupported: ONNX export of repeat_interleave for unknown "
            "input size.")
    # Handle cases where dim is negative
    if dim < 0:
        dim += len(input_sizes)

    output_sizes = input_sizes.copy()
    for idx, input_size in enumerate(input_sizes):
        if input_size is None:
            output_sizes[idx], input_sizes[idx] = 0, -1
    print(output_sizes, input_sizes)

    cond_dynamic_repeats = (repeats_dim == 1 and repeats_sizes[0] is None)
    # If input size is dynamic or repeats vector is dynamic
    if output_sizes[dim] == 0 or cond_dynamic_repeats:
        reps = sym_help._size_helper(g, input, dim)
        reps = unsqueeze(g, reps, 0)
        # Check if repeats vector is a single integer value
        # or a single dimension tensor with non-dynamic values
        if repeats_dim == 0 or (repeats_dim == 1 and repeats_sizes[0] == 1):
            if not sym_help._is_tensor(repeats):
                repeats = g.op("Constant", value_t=torch.LongTensor(repeats))
            repeats = g.op("Expand", repeats, reps)
        # Check if repeats is dynamic
        # As repeats is dynamic, we use a where node as a substitute for the if statement
        # If repests_dim = 1, expand repeats otherwise use original tensor
        elif cond_dynamic_repeats:
            repeat_dim = sym_help._size_helper(
                g, repeats, g.op("Constant", value_t=torch.LongTensor([0])))
            repeat_cond = g.op("Equal", repeat_dim,
                               g.op("Constant", value_t=torch.LongTensor([1])))
            repeats = where(g, repeat_cond, g.op("Expand", repeats, reps),
                            repeats)
    # There are cases when the repeats are 1-d tensor with multiple repeats, but dim
    # provided along one of the dynamic axes provided. A simple example would be
    # input.shape -> [1, 1, *] where * represents the dynamic axes, and dim = 2
    # Now, repeat interleaving can be performed in pytorch when the value of * matches
    # with the number of elements in repeat, for example if * -> 2, number of repeats
    # should be 2 as well.
    else:
        return torch.onnx.symbolic_opset9.repeat_interleave(
            g, self, repeats, final_dim)

    reps_like = g.op("ConstantOfShape",
                     g.op("Shape", repeats),
                     value_t=torch.tensor([1], dtype=torch.long))
    r_splits = split(g, repeats, reps_like, 0)
    i_splits = split(g, input, reps_like, dim)

    output_sizes[dim], input_sizes[dim] = -1, 1

    # Create a loop to iterate over each value along the dimension
    # and perform individual interleaving using the repeats tensor
    # Loop is of the following pattern
    # input (trip_count, cond)
    #   int trip_count = ...;
    #   bool cond = ...;
    #   for (int i=0; i < trip_count && cond; ++i) {
    #     cond = ...;
    #   }

    # Loop conditions
    loop_condition = g.op("Constant", value_t=torch.tensor(1))
    loop_condition = g.op("Cast", loop_condition, to_i=9)
    loop_len = reps

    # Create an empty sequence to store final expansions
    final_splits = g.op("SequenceEmpty")
    loop = g.op("Loop", loop_len, loop_condition, final_splits)

    # Loop inputs
    loop_block = _add_block(loop.node())
    block_input_iter = _add_input_to_block(loop_block)
    cond = _add_input_to_block(loop_block)
    final_splits = _add_input_to_block(loop_block)

    r_split = loop_block.op("SequenceAt", r_splits, block_input_iter)
    i_split = loop_block.op("SequenceAt", i_splits, block_input_iter)

    i_split = unsqueeze(loop_block, i_split, dim + 1)
    r_concat = [
        loop_block.op("Constant",
                      value_t=torch.LongTensor(input_sizes[:dim + 1])),
        r_split,
        loop_block.op("Constant",
                      value_t=torch.LongTensor(input_sizes[dim + 1:]))
    ]
    r_concat = loop_block.op("Concat", *r_concat, axis_i=0)
    i_split = expand(loop_block, i_split, r_concat, None)
    i_split = sym_help._reshape_helper(
        loop_block, i_split,
        g.op("Constant", value_t=torch.LongTensor(output_sizes)))
    final_splits = loop_block.op("SequenceInsert", final_splits, i_split)

    # Loop outputs
    cond_out = loop_block.op("Cast", loop_condition, to_i=9)
    _add_output_to_block(loop_block, cond_out)
    _add_output_to_block(loop_block, final_splits)

    loop_out = loop.node().output()
    loop_out = g.op("ConcatFromSequence", loop_out, axis_i=dim)
    return loop_out
コード例 #11
0
ファイル: symbolic_opset13.py プロジェクト: huaxz1986/pytorch
def tensor_split(g, self, indices_or_sections, dim, _outputs=None):
    axis = g.op("Constant", value_t=torch.tensor(dim, dtype=torch.long))
    axis = opset11.unsqueeze(g, axis, 0)
    const_1 = g.op("Constant", value_t=torch.tensor(1, dtype=torch.long))

    if symbolic_helper._is_split_static(indices_or_sections, _outputs):
        split_val = symbolic_helper._node_get(indices_or_sections.node(), "value")

        if split_val.dim() > 0:
            start = g.op("Constant", value_t=torch.tensor([0], dtype=torch.long))
            res = []
            assert _outputs is not None
            for i in range(_outputs - 1):
                end = g.op(
                    "Gather",
                    indices_or_sections,
                    g.op("Constant", value_t=torch.tensor([i], dtype=torch.long)),
                    axis_i=0,
                )
                res.append(g.op("Slice", self, start, end, axis))
                start = end

            end = symbolic_helper._size_helper(g, self, axis)
            res.append(g.op("Slice", self, start, end, axis))
            return res

        split_size = symbolic_helper._get_const(
            indices_or_sections, "i", "indices_or_sections"
        )

        size = symbolic_helper._get_tensor_dim_size(self, dim)
        if size is None:
            if _outputs is not None:
                size = split_size * _outputs
            else:
                raise errors.SymbolicValueError(
                    "Unknown dimension size not supported", self
                )

        min_split_size = size // split_size
        num_splits_one_extra = size % split_size

        splits = num_splits_one_extra * [min_split_size + 1]
        leftover = (split_size - num_splits_one_extra) * [min_split_size]

        splits = g.op(
            "Constant", value_t=torch.tensor(splits + leftover, dtype=torch.long)
        )
        return g.op("Split", self, splits, axis_i=dim, outputs=_outputs)

    if (
        symbolic_helper._is_tensor(indices_or_sections)
        and symbolic_helper._get_tensor_rank(indices_or_sections) == 1
    ):
        loop_len = symbolic_helper._size_helper(
            g, indices_or_sections, g.op("Constant", value_t=torch.tensor(0))
        )
        loop_len = opset11.unsqueeze(g, loop_len, 0)
        loop_condition = g.op("Cast", const_1, to_i=_C_onnx.TensorProtoDataType.BOOL)

        # To make the first slice in the below loop work,
        # we pad a zero to the first position so that it will be the initial start of slice.
        padding_0 = g.op("Constant", value_t=torch.tensor([0], dtype=torch.long))
        indices_or_sections = g.op("Concat", padding_0, indices_or_sections, axis_i=0)

        final_splits = g.op("SequenceEmpty")
        loop = g.op("Loop", loop_len, loop_condition, final_splits)

        # Loop inputs
        loop_block = utils._add_block(loop.node())
        block_input_iter = utils._add_input_to_block(loop_block)
        cond = utils._add_input_to_block(loop_block)
        final_splits = utils._add_input_to_block(loop_block)

        start = loop_block.op("Gather", indices_or_sections, block_input_iter, axis_i=0)
        end = loop_block.op(
            "Gather",
            indices_or_sections,
            loop_block.op("Add", block_input_iter, const_1),
            axis_i=0,
        )

        slice = loop_block.op("Slice", self, start, end, axis)
        final_splits = loop_block.op("SequenceInsert", final_splits, slice)

        # Loop outputs
        cond_out = loop_block.op("Identity", loop_condition)
        utils._add_output_to_block(loop_block, cond_out)
        utils._add_output_to_block(loop_block, final_splits)

        loop_out = loop.node().output()
        start = g.op(
            "Gather",
            indices_or_sections,
            g.op("Constant", value_t=torch.tensor(-1, dtype=torch.long)),
            axis_i=0,
        )
        start = opset11.unsqueeze(g, start, 0)
        end = symbolic_helper._size_helper(g, self, axis)

        last_slice = g.op("Slice", self, start, end, axis)

        return g.op("SequenceInsert", loop_out, last_slice)

    else:  # scalar tensor
        dim_size = symbolic_helper._size_helper(g, self, axis)
        min_split_size = g.op("Div", dim_size, indices_or_sections)
        min_split_size_plus_1 = g.op(
            "Add",
            min_split_size,
            const_1,
        )
        num_splits_one_extra = g.op("Mod", dim_size, indices_or_sections)
        splits = g.op("Tile", min_split_size_plus_1, num_splits_one_extra)
        leftover = g.op(
            "Tile",
            min_split_size,
            g.op(
                "Sub",
                opset11.unsqueeze(g, indices_or_sections, 0),
                num_splits_one_extra,
            ),
        )

        splits = g.op("Concat", splits, leftover, axis_i=0)
        if _outputs is None:
            return g.op("SplitToSequence", self, splits, axis_i=dim)
        return g.op("Split", self, splits, axis_i=dim, outputs=_outputs)
コード例 #12
0
ファイル: symbolic.py プロジェクト: dqawami/mmdetection
def multiclass_nms_core_symbolic(g,
                                 multi_bboxes,
                                 multi_scores,
                                 score_thr,
                                 nms_cfg,
                                 max_num=-1):

    from torch.onnx.symbolic_opset9 import reshape, squeeze
    from torch.onnx.symbolic_opset10 import _slice

    def cast(x, dtype):
        return g.op('Cast', x, to_i=sym_help.cast_pytorch_to_onnx[dtype])

    def get_size(x, dim):
        shape = g.op('Shape', x)
        dim = _slice(g, shape, axes=[0], starts=[dim], ends=[dim + 1])
        return cast(dim, 'Long')

    nms_op_type = nms_cfg.get('type', 'nms')
    assert nms_op_type == 'nms'
    assert 'iou_thr' in nms_cfg
    iou_threshold = nms_cfg['iou_thr']
    assert 0 <= iou_threshold <= 1

    # Transpose and reshape input tensors to fit ONNX NonMaxSuppression.
    multi_bboxes = reshape(g, multi_bboxes, [0, -1, 4])
    multi_bboxes = g.op('Transpose', multi_bboxes, perm_i=[1, 0, 2])

    batches_num = get_size(multi_bboxes, 0)
    spatial_num = get_size(multi_bboxes, 1)

    multi_scores = g.op('Transpose', multi_scores, perm_i=[1, 0])
    scores_shape = g.op('Concat',
                        batches_num,
                        g.op('Constant', value_t=torch.LongTensor([-1])),
                        spatial_num,
                        axis_i=0)
    multi_scores = reshape(g, multi_scores, scores_shape)
    classes_num = get_size(multi_scores, 1)

    assert max_num > 0

    indices = g.op(
        'NonMaxSuppression', multi_bboxes, multi_scores,
        g.op('Constant', value_t=torch.LongTensor([max_num])),
        g.op('Constant', value_t=torch.FloatTensor([iou_threshold])),
        g.op('Constant', value_t=torch.FloatTensor([score_thr])))

    # Flatten bboxes and scores.
    multi_bboxes_flat = reshape(g, multi_bboxes, [-1, 4])
    multi_scores_flat = reshape(g, multi_scores, [
        -1,
    ])

    # Flatten indices.
    batch_indices = _slice(g, indices, axes=[1], starts=[0], ends=[1])
    class_indices = _slice(g, indices, axes=[1], starts=[1], ends=[2])
    box_indices = _slice(g, indices, axes=[1], starts=[2], ends=[3])

    def add(*args, dtype='Long'):
        x = g.op('Add', args[0], args[1])
        if dtype is not None:
            x = cast(x, dtype)
        return x

    def mul(*args, dtype='Long'):
        x = g.op('Mul', args[0], args[1])
        if dtype is not None:
            x = cast(x, dtype)
        return x

    flat_box_indices = add(mul(batch_indices, spatial_num), box_indices)
    flat_score_indices = add(
        mul(add(mul(batch_indices, classes_num), class_indices), spatial_num),
        box_indices)

    # Select bboxes.
    out_bboxes = reshape(
        g, g.op('Gather', multi_bboxes_flat, flat_box_indices, axis_i=0),
        [-1, 4])
    out_scores = reshape(
        g, g.op('Gather', multi_scores_flat, flat_score_indices, axis_i=0),
        [-1, 1])
    # Having either batch size or number of classes here equal to one is the limitation of implementation.
    class_indices = reshape(g, cast(add(class_indices, batch_indices),
                                    'Float'), [-1, 1])

    # Combine bboxes, scores and labels into a single tensor.
    # This a workaround for a PyTorch bug (feature?),
    # limiting ONNX operations to output only single tensor.
    out_combined_bboxes = g.op('Concat',
                               out_bboxes,
                               out_scores,
                               class_indices,
                               axis_i=1)

    # Get the top scored bboxes only.
    elements_num = sym_help._size_helper(g,
                                         out_scores,
                                         dim=g.op('Constant',
                                                  value_t=torch.LongTensor(
                                                      [0])))
    max_num = g.op('Constant', value_t=torch.LongTensor([max_num]))
    if sym_help._export_onnx_opset_version < 12:
        kn = g.op('Concat', max_num, elements_num, axis_i=0)
        kn = g.op('ReduceMin', kn, keepdims_i=0)
    else:
        kn = g.op('Min', max_num, elements_num)
    _, top_indices = sym_help._topk_helper(g, out_scores, kn, dim=0)
    # top_indices = squeeze(g, top_indices, dim=1)
    top_indices = reshape(g, top_indices, [
        -1,
    ])
    out_combined_bboxes = g.op('Gather',
                               out_combined_bboxes,
                               top_indices,
                               axis_i=0)

    return out_combined_bboxes
コード例 #13
0
ファイル: symbolic_opset12.py プロジェクト: huaxz1986/pytorch
def unfold(g, input, dimension, size, step):
    const_size = symbolic_helper._maybe_get_const(size, "i")
    const_step = symbolic_helper._maybe_get_const(step, "i")
    if not symbolic_helper._is_value(
            const_size) and not symbolic_helper._is_value(const_step):
        return opset9.unfold(g, input, dimension, const_size, const_step)
    if symbolic_helper.is_caffe2_aten_fallback():
        return g.at("unfold",
                    input,
                    dimension_i=dimension,
                    size_i=size,
                    step_i=step)

    sizedim = symbolic_helper._get_tensor_dim_size(input, dimension)
    if sizedim is not None:
        low_start = g.op("Constant", value_t=torch.tensor(0))
        low_end = g.op("Constant", value_t=torch.tensor(sizedim))
        hi_end = g.op("Constant", value_t=torch.tensor(sizedim + 1))
        low_indices = g.op("Range", low_start, low_end, step)
        hi_indices = g.op("Range", size, hi_end, step)

        low_size = symbolic_helper._size_helper(
            g, low_indices, g.op("Constant", value_t=torch.tensor(0)))
        hi_size = symbolic_helper._size_helper(
            g, hi_indices, g.op("Constant", value_t=torch.tensor(0)))

        ndim = symbolic_helper._get_tensor_rank(input)
        assert ndim is not None
        perm = list(range(0, ndim))
        perm.append(perm.pop(dimension))

        unsqueeze_list = []
        loop_condition = g.op("Constant", value_t=torch.tensor(1))
        loop_condition = g.op("Cast", loop_condition, to_i=9)
        loop_len = g.op("Min", low_size, hi_size)
        loop = g.op("Loop", loop_len, loop_condition)

        loop_block = utils._add_block(loop.node())
        block_input_iter = utils._add_input_to_block(loop_block)
        cond = utils._add_input_to_block(loop_block)

        starts = loop_block.op("Gather", low_indices, block_input_iter)
        ends = loop_block.op("Gather", hi_indices, block_input_iter)
        axes = loop_block.op("Constant", value_t=torch.tensor([2]))
        starts = symbolic_helper._unsqueeze_helper(loop_block, starts, [0])
        ends = symbolic_helper._unsqueeze_helper(loop_block, ends, [0])
        stack = loop_block.op("Slice", input, starts, ends, axes)

        unsqueeze = symbolic_helper._unsqueeze_helper(
            loop_block, loop_block.op("Transpose", stack, perm_i=perm),
            [dimension])
        unsqueeze_list.append(unsqueeze)
        concat = loop_block.op("Concat", *unsqueeze_list, axis_i=0)

        cond_out = loop_block.op("Cast", loop_condition, to_i=9)
        utils._add_output_to_block(loop_block, cond_out)
        utils._add_output_to_block(loop_block, concat)

        loop_output = loop.node().output()
        perm = [0, 1, 2, 3, 4]
        perm[0], perm[dimension + 1] = perm[dimension + 1], perm[0]
        transpose = g.op("Transpose", loop_output, perm_i=perm)
        squeeze = symbolic_helper._squeeze_helper(g, transpose, [0])

        return squeeze
    else:
        return symbolic_helper._unimplemented("Unfold",
                                              "input size not accessible")