コード例 #1
0
ファイル: test_backbone.py プロジェクト: triwahyuu/vortex
def test_backbone_class_export(tmp_path):
    stages_output = "tri_stage"

    x = torch.randn(1, 3, 224, 224)
    model = Backbone("resnet18", stages_output=stages_output, freeze=True).eval()
    y = model(x)
    assert tuple(o.size(1) for o in y) == model.stages_channel

    ## onnx
    onnx_path = tmp_path.joinpath("resnet18_backbone.onnx")
    onnx_export(model, x, str(onnx_path), input_names=['input'], opset_version=11)
    sess = onnxruntime.InferenceSession(str(onnx_path), providers=['CPUExecutionProvider'])
    input_name = sess.get_inputs()[0].name
    ort_y = sess.run(None, {input_name: x.clone().numpy()})
    assert tuple(o.shape[1] for o in ort_y) == model.stages_channel
    assert all([np.allclose(r, p.numpy(), atol=1e-4) for r,p in zip(ort_y, y)])

    pt_path = onnx_path.with_suffix(".pt")
    pt_model = torchscript_trace(model, x, check_tolerance=1e-6)
    pt_model.save(str(pt_path))
    loaded_pt_model = torchscript_load(str(pt_path))
    pt_y = loaded_pt_model(x.clone())
    assert tuple(o.size(1) for o in pt_y) == model.stages_channel
    assert all([torch.allclose(p, pr) for p,pr in zip(y, pt_y)])
コード例 #2
0
def export_pytorch(
    preprocessor: Union["PreTrainedTokenizer", "FeatureExtractionMixin"],
    model: "PreTrainedModel",
    config: OnnxConfig,
    opset: int,
    output: Path,
    tokenizer: "PreTrainedTokenizer" = None,
    device: str = "cpu",
) -> Tuple[List[str], List[str]]:
    """
    Export a PyTorch model to an ONNX Intermediate Representation (IR)

    Args:
        preprocessor: ([`PreTrainedTokenizer`] or [`FeatureExtractionMixin`]):
            The preprocessor used for encoding the data.
        model ([`PreTrainedModel`]):
            The model to export.
        config ([`~onnx.config.OnnxConfig`]):
            The ONNX configuration associated with the exported model.
        opset (`int`):
            The version of the ONNX operator set to use.
        output (`Path`):
            Directory to store the exported ONNX model.
        device (`str`, *optional*, defaults to `cpu`):
            The device on which the ONNX model will be exported. Either `cpu` or `cuda`.

    Returns:
        `Tuple[List[str], List[str]]`: A tuple with an ordered list of the model's inputs, and the named inputs from
        the ONNX configuration.
    """

    if isinstance(preprocessor, PreTrainedTokenizerBase) and tokenizer is not None:
        raise ValueError("You cannot provide both a tokenizer and a preprocessor to export the model.")
    if tokenizer is not None:
        warnings.warn(
            "The `tokenizer` argument is deprecated and will be removed in version 5 of Transformers. Use"
            " `preprocessor` instead.",
            FutureWarning,
        )
        logger.info("Overwriting the `preprocessor` argument with `tokenizer` to generate dummmy inputs.")
        preprocessor = tokenizer

    if issubclass(type(model), PreTrainedModel):
        import torch
        from torch.onnx import export as onnx_export

        logger.info(f"Using framework PyTorch: {torch.__version__}")
        with torch.no_grad():
            model.config.return_dict = True
            model.eval()

            # Check if we need to override certain configuration item
            if config.values_override is not None:
                logger.info(f"Overriding {len(config.values_override)} configuration item(s)")
                for override_config_key, override_config_value in config.values_override.items():
                    logger.info(f"\t- {override_config_key} -> {override_config_value}")
                    setattr(model.config, override_config_key, override_config_value)

            # Ensure inputs match
            # TODO: Check when exporting QA we provide "is_pair=True"
            model_inputs = config.generate_dummy_inputs(preprocessor, framework=TensorType.PYTORCH)
            device = torch.device(device)
            if device.type == "cuda" and torch.cuda.is_available():
                model.to(device)
                model_inputs = dict((k, v.to(device)) for k, v in model_inputs.items())
            inputs_match, matched_inputs = ensure_model_and_config_inputs_match(model, model_inputs.keys())
            onnx_outputs = list(config.outputs.keys())

            if not inputs_match:
                raise ValueError("Model and config inputs doesn't match")

            config.patch_ops()

            # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11,
            # so we check the torch version for backwards compatibility
            if parse(torch.__version__) < parse("1.10"):
                # export can work with named args but the dict containing named args
                # has to be the last element of the args tuple.
                try:
                    onnx_export(
                        model,
                        (model_inputs,),
                        f=output.as_posix(),
                        input_names=list(config.inputs.keys()),
                        output_names=onnx_outputs,
                        dynamic_axes={
                            name: axes for name, axes in chain(config.inputs.items(), config.outputs.items())
                        },
                        do_constant_folding=True,
                        use_external_data_format=config.use_external_data_format(model.num_parameters()),
                        enable_onnx_checker=True,
                        opset_version=opset,
                    )
                except RuntimeError as err:
                    message = str(err)
                    if (
                        message
                        == "Exporting model exceed maximum protobuf size of 2GB. Please call torch.onnx.export without"
                        " setting use_external_data_format parameter."
                    ):
                        message = (
                            "Exporting model exceed maximum protobuf size of 2GB. Please call torch.onnx.export"
                            " without setting use_external_data_format parameter or try with torch 1.10+."
                        )
                        raise RuntimeError(message)
                    else:
                        raise err
            else:
                onnx_export(
                    model,
                    (model_inputs,),
                    f=output.as_posix(),
                    input_names=list(config.inputs.keys()),
                    output_names=onnx_outputs,
                    dynamic_axes={name: axes for name, axes in chain(config.inputs.items(), config.outputs.items())},
                    do_constant_folding=True,
                    opset_version=opset,
                )

            config.restore_ops()

    return matched_inputs, onnx_outputs
コード例 #3
0
def export_pytorch(
    tokenizer: PreTrainedTokenizer,
    model: PreTrainedModel,
    config: OnnxConfig,
    opset: int,
    output: Path,
) -> Tuple[List[str], List[str]]:
    """
    Export a PyTorch model to an ONNX Intermediate Representation (IR)

    Args:
        tokenizer ([`PreTrainedTokenizer`]):
            The tokenizer used for encoding the data.
        model ([`PreTrainedModel`]):
            The model to export.
        config ([`~onnx.config.OnnxConfig`]):
            The ONNX configuration associated with the exported model.
        opset (`int`):
            The version of the ONNX operator set to use.
        output (`Path`):
            Directory to store the exported ONNX model.

    Returns:
        `Tuple[List[str], List[str]]`: A tuple with an ordered list of the model's inputs, and the named inputs from
        the ONNX configuration.
    """
    if issubclass(type(model), PreTrainedModel):
        import torch
        from torch.onnx import export as onnx_export

        logger.info(f"Using framework PyTorch: {torch.__version__}")
        with torch.no_grad():
            model.config.return_dict = True
            model.eval()

            # Check if we need to override certain configuration item
            if config.values_override is not None:
                logger.info(
                    f"Overriding {len(config.values_override)} configuration item(s)"
                )
                for override_config_key, override_config_value in config.values_override.items(
                ):
                    logger.info(
                        f"\t- {override_config_key} -> {override_config_value}"
                    )
                    setattr(model.config, override_config_key,
                            override_config_value)

            # Ensure inputs match
            # TODO: Check when exporting QA we provide "is_pair=True"
            model_inputs = config.generate_dummy_inputs(
                tokenizer, framework=TensorType.PYTORCH)
            inputs_match, matched_inputs = ensure_model_and_config_inputs_match(
                model, model_inputs.keys())
            onnx_outputs = list(config.outputs.keys())

            if not inputs_match:
                raise ValueError("Model and config inputs doesn't match")

            config.patch_ops()

            # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11,
            # so we check the torch version for backwards compatibility
            if parse(torch.__version__) <= parse("1.10.99"):
                # export can work with named args but the dict containing named args
                # has to be the last element of the args tuple.
                onnx_export(
                    model,
                    (model_inputs, ),
                    f=output.as_posix(),
                    input_names=list(config.inputs.keys()),
                    output_names=onnx_outputs,
                    dynamic_axes={
                        name: axes
                        for name, axes in chain(config.inputs.items(),
                                                config.outputs.items())
                    },
                    do_constant_folding=True,
                    use_external_data_format=config.use_external_data_format(
                        model.num_parameters()),
                    enable_onnx_checker=True,
                    opset_version=opset,
                )
            else:
                onnx_export(
                    model,
                    (model_inputs, ),
                    f=output.as_posix(),
                    input_names=list(config.inputs.keys()),
                    output_names=onnx_outputs,
                    dynamic_axes={
                        name: axes
                        for name, axes in chain(config.inputs.items(),
                                                config.outputs.items())
                    },
                    do_constant_folding=True,
                    opset_version=opset,
                )

            config.restore_ops()

    return matched_inputs, onnx_outputs