def test_generated_functional_tests(self): with enable_profiling_mode(): stats = [("Name", "Ifs/Loops", "non-tensor ops")] for test in nn_functional_tests: test_name = test[0] fn, inputs = get_nn_functional_compiled_fn_and_inputs(*test) for _ in range(6): fn(*inputs) g = torch.jit.last_executed_optimized_graph() stats.append((test_name, num_ifs_loops(g), num_non_tensor_nodes(g))) for line in stats: print(line)
def test_nn_module_tests(self): with enable_profiling_mode(): stats = [("Name", "Ifs/Loops", "non-tensor ops")] for test in get_all_nn_module_tests(): out = try_get_nn_module_compiled_mod_and_inputs(**test) if not out: continue mod, inputs = out test_name = get_nn_mod_test_name(**test) for _ in range(6): mod(*inputs) g = torch.jit.last_executed_optimized_graph() stats.append((test_name, num_ifs_loops(g), num_non_tensor_nodes(g))) for line in stats: print(line)