def ext_modules(): extensions = [ cpp_extension.CppExtension( "torchsort.isotonic_cpu", sources=["torchsort/isotonic_cpu.cpp"], extra_compile_args=compile_args(), ), ] if cuda_toolkit_available(): extensions.append( cpp_extension.CUDAExtension( "torchsort.isotonic_cuda", sources=["torchsort/isotonic_cuda.cu"], )) return extensions
def get_extensions(): # This code originally offered non-CUDA compilation... this seemed to be a # lie though as crucial methods like "modulated_deform_conv" are currently # unimplemented for CPU. Instead, we bite the bullet and make CUDA an # explicit requirement for this package. It matches the typical use-case at # the end of the day. root = os.path.join('fcos', 'core', 'csrc') return [ tcpp.CUDAExtension("fcos.core._C", [glob(os.path.join(root, '*.cpp'))[0]] + glob(os.path.join(root, 'cpu', '*.cpp')) + glob(os.path.join(root, 'cuda', '*.cu')), include_dirs=[root], define_macros=[("WITH_CUDA", None)], extra_compile_args={ "cxx": [], "nvcc": [ "-DCUDA_HAS_FP16=1", "-D__CUDA_NO_HALF_OPERATORS__", "-D__CUDA_NO_HALF_CONVERSIONS__", "-D__CUDA_NO_HALF2_OPERATORS__", ] }) ]
from setuptools import setup from torch.utils import cpp_extension setup(name='rle', description="a package used for compress sparse tensor", packages=["rle"], package_data={"rle": ["__init__.py"]}, ext_modules=[ cpp_extension.CUDAExtension('rle_cuda', [ 'rle_cuda.cpp', 'rle_cuda_kernel.cu', ]), ], cmdclass={'build_ext': cpp_extension.BuildExtension})
from setuptools import setup, Extension from torch.utils import cpp_extension setup(name='lltm_cpp', ext_modules=[ cpp_extension.CppExtension('lltm_cpp', ['./models/ops/lltm.cpp']) ], cmdclass={'build_ext': cpp_extension.BuildExtension}) setup(name='lltm_cuda', ext_modules=[ cpp_extension.CUDAExtension('lltm_cuda', [ './models/ops/lltm_cuda.cpp', './models/ops/lltm_cuda_kernel.cu', ]) ], cmdclass={'build_ext': cpp_extension.BuildExtension})
plugin_include_dirs = [ "{}/include/".format(ucc_plugin_dir), "{}/include/".format(ucx_home), "{}/include/".format(ucc_home) ] plugin_library_dirs = ["{}/lib/".format(ucx_home), "{}/lib/".format(ucc_home)] plugin_libraries = ["ucp", "uct", "ucm", "ucs", "ucc"] with_cuda = os.environ.get("WITH_CUDA") if with_cuda is None or with_cuda == "no": print("CUDA support is disabled") module = cpp_extension.CppExtension(name="torch_ucc", sources=plugin_sources, include_dirs=plugin_include_dirs, library_dirs=plugin_library_dirs, libraries=plugin_libraries, extra_compile_args=plugin_compile_args) else: print("CUDA support is enabled") plugin_compile_args.append("-DUSE_CUDA") module = cpp_extension.CUDAExtension( name="torch_ucc", sources=plugin_sources, include_dirs=plugin_include_dirs, library_dirs=plugin_library_dirs, libraries=plugin_libraries, extra_compile_args=plugin_compile_args) setup(name="torch-ucc", version="1.0.0", ext_modules=[module], cmdclass={'build_ext': cpp_extension.BuildExtension})
import fileinput import os import sys from setuptools import setup from torch.utils import cpp_extension filenames = [ os.path.join(os.path.dirname(__file__), "fused_ops_frontend.cpp"), os.path.join(os.path.dirname(__file__), "multi_tensor_adam.cu"), os.path.join(os.path.dirname(__file__), "multi_tensor_scale_kernel.cu"), os.path.join(os.path.dirname(__file__), "multi_tensor_axpby_kernel.cu"), ] use_rocm = True if os.environ["ONNXRUNTIME_ROCM_VERSION"] else False extra_compile_args = {"cxx": ["-O3"]} if not use_rocm: extra_compile_args.update( {"nvcc": ["-lineinfo", "-O3", "--use_fast_math"]}) setup( name="fused_ops", ext_modules=[ cpp_extension.CUDAExtension(name="fused_ops", sources=filenames, extra_compile_args=extra_compile_args) ], cmdclass={"build_ext": cpp_extension.BuildExtension}, )
rmtree(path) ext_modules = [ cpp_extension.CUDAExtension( 'trtorch._C', [ 'trtorch/csrc/trtorch_py.cpp', 'trtorch/csrc/tensorrt_backend.cpp', 'trtorch/csrc/tensorrt_classes.cpp', 'trtorch/csrc/register_tensorrt_classes.cpp', ], library_dirs=[(dir_path + '/trtorch/lib/'), "/opt/conda/lib/python3.6/config-3.6m-x86_64-linux-gnu"], libraries=["trtorch"], include_dirs=[ dir_path + "trtorch/csrc", dir_path + "/../", dir_path + "/../bazel-TRTorch/external/tensorrt/include", ], extra_compile_args=[ "-Wno-deprecated", "-Wno-deprecated-declarations", ] + (["-D_GLIBCXX_USE_CXX11_ABI=1"] if CXX11_ABI else ["-D_GLIBCXX_USE_CXX11_ABI=0"]), extra_link_args=[ "-Wno-deprecated", "-Wno-deprecated-declarations", "-Wl,--no-as-needed", "-ltrtorch", "-Wl,-rpath,$ORIGIN/lib", "-lpthread", "-ldl", "-lutil", "-lrt", "-lm", "-Xlinker", "-export-dynamic" ] + (["-D_GLIBCXX_USE_CXX11_ABI=1"] if CXX11_ABI else ["-D_GLIBCXX_USE_CXX11_ABI=0"]), undef_macros=["NDEBUG"]) ] with open("README.md", "r", encoding="utf-8") as fh: long_description = fh.read()
import os from setuptools import setup, Extension from torch.utils import cpp_extension # library_dirs should point to the libtrtorch.so, include_dirs should point to the dir that include the headers # 1) download the latest package from https://github.com/NVIDIA/TRTorch/releases/ # 2) Extract the file from downloaded package, we will get the "trtorch" directory # 3) Set trtorch_path to that directory trtorch_path = <PATH TO TRTORCH> ext_modules = [ cpp_extension.CUDAExtension('elu_converter', ['./csrc/elu_converter.cpp'], library_dirs=[(trtorch_path + "/lib/")], libraries=["trtorch"], include_dirs=[trtorch_path + "/include/trtorch/"]) ] setup( name='elu_converter', ext_modules=ext_modules, cmdclass={'build_ext': cpp_extension.BuildExtension}, )
base_path = os.path.dirname(os.path.realpath(__file__)) if 'Windows' in platform(): CUDA_HOME = os.environ.get('CUDA_HOME', os.environ.get('CUDA_PATH')) extra_args = [] else: CUDA_HOME = os.environ.get('CUDA_HOME', '/usr/local/cuda') extra_args = ['-Wno-sign-compare'] with open(f'frameworks/pytorch/_version.py', 'wt') as f: f.write(f'__version__ = "{VERSION}"') extension = cpp_extension.CUDAExtension( 'haste_pytorch_lib', sources=glob('frameworks/pytorch/*.cc'), extra_compile_args=extra_args, include_dirs=[ os.path.join(base_path, 'lib'), os.path.join(CUDA_HOME, 'include') ], libraries=['haste'], library_dirs=['.']) setup(name='haste_pytorch', version=VERSION, description=DESCRIPTION, long_description=open('README.md', 'r', encoding='utf-8').read(), long_description_content_type='text/markdown', author=AUTHOR, author_email=AUTHOR_EMAIL, url=URL, license=LICENSE, keywords='pytorch machine learning rnn lstm gru custom op',
rmtree(path) ext_modules = [ cpp_extension.CUDAExtension('trtorch._C', ['trtorch/csrc/trtorch_py.cpp'], library_dirs=[ dir_path + '/trtorch/lib/libtrtorch.so', dir_path + '/trtorch/lib/' ], libraries=[ "trtorch" ], include_dirs=[ dir_path + "/../", dir_path + "/../bazel-TRTorch/external/tensorrt/include", ], extra_compile_args=[ "-D_GLIBCXX_USE_CXX11_ABI=0", "-Wno-deprecated-declaration", ], extra_link_args=[ "-D_GLIBCXX_USE_CXX11_ABI=0" "-Wl,--no-as-needed", "-ltrtorch", "-Wl,-rpath,$ORIGIN/lib" ], undef_macros=[ "NDEBUG" ] ) ] with open("README.md", "r") as fh:
import torch from setuptools import setup import torch.utils.cpp_extension as cpp # In any case, include the CPU version modules = [ cpp.CppExtension('torchsearchsorted.cpu', ['torchsearchsorted/cpu/searchsorted_cpu_wrapper.cpp']) ] # if CUDA is available, add the cuda extension if torch.cuda.is_available(): modules += [ cpp.CUDAExtension('torchsearchsorted.cuda', [ 'torchsearchsorted/cuda/searchsorted_cuda_wrapper.cpp', 'torchsearchsorted/cuda/searchsorted_cuda_kernel.cu' ]) ] # Now proceed to setup setup(name='torchsearchsorted', version='1.0', description='A searchsorted implementation for pytorch', keywords='searchsorted', author='Antoine Liutkus', author_email='*****@*****.**', packages=['torchsearchsorted'], ext_modules=modules, cmdclass={'build_ext': cpp.BuildExtension})
from setuptools import setup, Extension from torch.utils import cpp_extension setup(name='double_ext', ext_modules=[ cpp_extension.CUDAExtension('double_ext', ['double_ext.cpp'], libraries=['double_kernel']) ], cmdclass={'build_ext': cpp_extension.BuildExtension})
""" Created at 07.11.19 19:12 @author: gregor """ from setuptools import setup from torch.utils import cpp_extension setup(name='sandbox_cuda', ext_modules=[ cpp_extension.CUDAExtension( 'sandbox', ['src/sandbox.cpp', 'src/sandbox_cuda.cu']) ], cmdclass={'build_ext': cpp_extension.BuildExtension})
""" Created at 07.11.19 19:12 @author: gregor """ import os, sys, site from pathlib import Path # recognise newly installed packages in path site.main() from setuptools import setup from torch.utils import cpp_extension dir_ = Path(os.path.dirname(sys.argv[0])) setup(name='RoIAlign extension 2D', ext_modules=[cpp_extension.CUDAExtension('roi_al_extension', [str(dir_/'src/RoIAlign_interface.cpp'), str(dir_/'src/RoIAlign_cuda.cu')])], cmdclass={'build_ext': cpp_extension.BuildExtension} ) setup(name='RoIAlign extension 3D', ext_modules=[cpp_extension.CUDAExtension('roi_al_extension_3d', [str(dir_/'src/RoIAlign_interface_3d.cpp'), str(dir_/'src/RoIAlign_cuda_3d.cu')])], cmdclass={'build_ext': cpp_extension.BuildExtension} )
from setuptools import setup from torch.utils import cpp_extension import os import glob ext_modules = [ cpp_extension.CppExtension( "splatting.cpu", ["cpp/splatting.cpp"], ), ] cublas_include_paths = glob.glob("/usr/local/**/cublas_v2.h", recursive=True) if len(cublas_include_paths) > 0: ext_modules.append( cpp_extension.CUDAExtension( "splatting.cuda", ["cuda/splatting_cuda.cpp", "cuda/splatting.cu"], include_dirs=[os.path.dirname(cublas_include_paths[0])], ), ) setup( name="splatting", ext_modules=ext_modules, cmdclass={"build_ext": cpp_extension.BuildExtension}, install_requires=["torch"], extras_require={"dev": ["pytest", "pytest-cov", "pre-commit"]}, # pip install -e '.[dev]' )
from setuptools import setup, Extension from torch.utils import cpp_extension # setup(name='dp_cpp', # ext_modules=[cpp_extension.CppExtension('lltm_cpp', ['lltm.cpp'])], # cmdclass={'build_ext': cpp_extension.BuildExtension}) setup( name='dp_cuda', ext_modules=[ cpp_extension.CUDAExtension('dp_cuda', [ 'dp_cuda.cpp', 'dp_cuda_kernel.cu', ]) ], cmdclass={ 'build_ext': cpp_extension.BuildExtension }) setup( name='dp_ne_cuda', ext_modules=[ cpp_extension.CUDAExtension('dp_ne_cuda', [ 'dp_ne_cuda.cpp', 'dp_ne_cuda_kernel.cu', ]) ], cmdclass={ 'build_ext': cpp_extension.BuildExtension }) # setup( # name='dp_ne_rank1_cuda',
from setuptools import setup, Extension from torch.utils import cpp_extension setup(name='smear_cuda', ext_modules=[ cpp_extension.CUDAExtension( 'smear_cuda', ['smear_cuda.cpp', 'smear_cuda_kernel.cu']) ], cmdclass={'build_ext': cpp_extension.BuildExtension})
from setuptools import setup, Extension, find_packages from torch.utils import cpp_extension ''' python setup.py install usage: import torch first, then import this module ''' setup(name='pytorch_loss', ext_modules=[ cpp_extension.CUDAExtension('focal_cpp', [ 'csrc/focal_kernel.cu', ]), cpp_extension.CUDAExtension('mish_cpp', ['csrc/mish_kernel.cu']), cpp_extension.CUDAExtension('swish_cpp', ['csrc/swish_kernel.cu']), cpp_extension.CUDAExtension('soft_dice_cpp', ['csrc/soft_dice_kernel_v2.cu']), cpp_extension.CUDAExtension('lsr_cpp', ['csrc/lsr_kernel.cu']), cpp_extension.CUDAExtension('large_margin_cpp', ['csrc/large_margin_kernel.cu']), cpp_extension.CUDAExtension('ohem_cpp', ['csrc/ohem_label_kernel.cu']), cpp_extension.CUDAExtension('one_hot_cpp', ['csrc/one_hot_kernel.cu']), cpp_extension.CUDAExtension('lovasz_softmax_cpp', ['csrc/lovasz_softmax.cu']), cpp_extension.CUDAExtension('taylor_softmax_cpp', ['csrc/taylor_softmax.cu']), ], cmdclass={'build_ext': cpp_extension.BuildExtension}, packages=find_packages())
from setuptools import setup, Extension from torch.utils import cpp_extension setup(name='rel_to_abs_index_cuda', ext_modules=[ cpp_extension.CUDAExtension( 'rel_to_abs_index_cuda', ['rel_to_abs_index_cuda.cpp', 'rel_to_abs_index_cuda_kernel.cu']) ], cmdclass={'build_ext': cpp_extension.BuildExtension})
from setuptools import setup, Extension, find_packages from torch.utils import cpp_extension setup( name='quant', ext_modules=[ cpp_extension.CUDAExtension('quant.cpp_extension.calc_quant_bin', ['quant/cpp_extension/calc_quant_bin.cc']), ], cmdclass={'build_ext': cpp_extension.BuildExtension}, packages=find_packages())
from setuptools import setup, Extension from torch.utils import cpp_extension import os module_path = os.path.dirname(__file__) setup(name='op_cpp', ext_modules=[ cpp_extension.CUDAExtension( name="fused", sources=["fused_bias_act.cpp", "fused_bias_act_kernel.cu"], include_dirs=cpp_extension.include_paths(), ), cpp_extension.CUDAExtension( name="upfirdn2d", sources=["upfirdn2d.cpp", "upfirdn2d_kernel.cu"], include_dirs=cpp_extension.include_paths(), ), ], cmdclass={'build_ext': cpp_extension.BuildExtension})
current_dir = os.path.dirname(os.path.abspath(__file__)) cuda_sources = glob.glob(os.path.join(current_dir, 'csrc', 'core', '*.cu')) cpp_sources = glob.glob(os.path.join(current_dir, 'csrc', 'op', '*.cpp')) py11_sources = glob.glob(os.path.join(current_dir, 'csrc', 'py11', '*.cpp')) sources = cuda_sources + cpp_sources + py11_sources cuda_include_paths = cpp_extension.include_paths(cuda=True) self_include_paths = [os.path.join(current_dir, 'csrc')] include_paths = cuda_include_paths + self_include_paths setup(name='EET', version=__version__, package_dir={"": "python"}, packages=find_packages("python"), ext_modules=[ cpp_extension.CUDAExtension(name='EET', sources=sources, include_dirs=include_paths, extra_compile_args={ 'cxx': ['-g'], 'nvcc': [ '-U__CUDA_NO_HALF_OPERATORS__', '-U__CUDA_NO_HALF_CONVERSIONS__', '-U__CUDA_NO_HALF2_OPERATORS__' ] }, define_macros=[('VERSION_INFO', __version__)]) ], cmdclass={'build_ext': cpp_extension.BuildExtension})
import torch.cuda from torch.utils import cpp_extension sourceFiles = ['hingetree.cpp'] extraCflags = ['-O2'] extraCudaFlags = ['-O2'] if torch.cuda.is_available(): sourceFiles.append('hingetree_gpu.cu') extraCflags.append('-DWITH_CUDA=1') setup(name='hingetree_cpp', ext_modules=[ cpp_extension.CUDAExtension(name='hingetree_cpp', sources=sourceFiles, extra_compile_args={ 'cxx': extraCflags, 'nvcc': extraCudaFlags }) ], cmdclass={'build_ext': cpp_extension.BuildExtension}) else: setup(name='hingetree_cpp', ext_modules=[ cpp_extension.CppExtension(name='hingetree_cpp', sources=sourceFiles, extra_compile_args={ 'cxx': extraCflags, 'nvcc': extraCudaFlags }) ], cmdclass={'build_ext': cpp_extension.BuildExtension})
""" Created at 07.11.19 19:12 @author: gregor """ import os, sys, site from pathlib import Path # recognise newly installed packages in path site.main() from setuptools import setup from torch.utils import cpp_extension dir_ = Path(os.path.dirname(sys.argv[0])) setup(name='nms_extension', ext_modules=[ cpp_extension.CUDAExtension( 'nms_extension', [str(dir_ / 'src/nms_interface.cpp'), str(dir_ / 'src/nms.cu')]) ], cmdclass={'build_ext': cpp_extension.BuildExtension})
import fileinput import os import sys from setuptools import setup from torch.utils import cpp_extension # TODO: Implement a cleaner way to auto-generate torch_gpu_allocator.cc use_rocm = True if os.environ["ONNXRUNTIME_ROCM_VERSION"] else False gpu_identifier = "hip" if use_rocm else "cuda" gpu_allocator_header = "HIPCachingAllocator" if use_rocm else "CUDACachingAllocator" filename = os.path.join(os.path.dirname(__file__), "torch_gpu_allocator.cc") with fileinput.FileInput(filename, inplace=True) as file: for line in file: if "___gpu_identifier___" in line: line = line.replace("___gpu_identifier___", gpu_identifier) if "___gpu_allocator_header___" in line: line = line.replace("___gpu_allocator_header___", gpu_allocator_header) sys.stdout.write(line) setup( name="torch_gpu_allocator", ext_modules=[ cpp_extension.CUDAExtension(name="torch_gpu_allocator", sources=[filename]) ], cmdclass={"build_ext": cpp_extension.BuildExtension}, )
''' File Created: Mon Mar 02 2020 Author: Peng YUN ([email protected]) Copyright 2018-2020 Peng YUN, RAM-Lab, HKUST ''' from setuptools import setup, Extension from torch.utils import cpp_extension setup(name='iou_cpp', ext_modules=[cpp_extension.CppExtension('iou_cpp', ['iou.cpp'])], cmdclass={'build_ext': cpp_extension.BuildExtension}) setup(name='boxop_cpp', ext_modules=[cpp_extension.CppExtension('boxop_cpp', ['boxop.cpp'])], cmdclass={'build_ext': cpp_extension.BuildExtension}) setup(name='iou_cuda', ext_modules=[ cpp_extension.CUDAExtension('iou_cuda', ['iou_cuda.cpp', 'iou_cuda_kernel.cu']) ], cmdclass={'build_ext': cpp_extension.BuildExtension}) setup(name='boxop_cuda', ext_modules=[ cpp_extension.CUDAExtension( 'boxop_cuda', ['boxop_cuda.cpp', 'boxop_cuda_kernel.cu']) ], cmdclass={'build_ext': cpp_extension.BuildExtension})
from setuptools import setup, Extension from torch.utils import cpp_extension # setup(name='dp_cpp', # ext_modules=[cpp_extension.CppExtension('lltm_cpp', ['lltm.cpp'])], # cmdclass={'build_ext': cpp_extension.BuildExtension}) setup(name='inplace_abn', ext_modules=[ cpp_extension.CUDAExtension('inplace_abn', [ 'inplace_abn.cpp', 'inplace_abn_cpu.cpp', 'inplace_abn_cuda.cu', ], extra_compile_args={ 'nvcc': ["--expt-extended-lambda"], 'cxx': ["-O3"] }) ], cmdclass={'build_ext': cpp_extension.BuildExtension})
from setuptools import setup, Extension from torch.utils import cpp_extension setup(name='calc_assoc_cuda', ext_modules=[ cpp_extension.CUDAExtension( 'calc_assoc_cuda', ['calc_assoc_cuda.cpp', 'calc_assoc_cuda_kernel.cu']) ], cmdclass={'build_ext': cpp_extension.BuildExtension})
from setuptools import setup, Extension from torch.utils import cpp_extension ''' python setup.py install usage: import torch first, then import this module ''' setup(name='pytorch_loss', ext_modules=[ cpp_extension.CUDAExtension( 'focal_cpp', ['csrc/focal.cpp', 'csrc/focal_kernel.cu']), cpp_extension.CUDAExtension('mish_cpp', ['csrc/mish_kernel.cu']), cpp_extension.CUDAExtension('swish_cpp', ['csrc/swish_kernel.cu']), cpp_extension.CUDAExtension('soft_dice_cpp', ['csrc/soft_dice_kernel.cu']), cpp_extension.CUDAExtension('lsr_cpp', ['csrc/lsr_kernel_v2.cu']), cpp_extension.CUDAExtension('large_margin_cpp', ['csrc/large_margin_kernel.cu']), cpp_extension.CUDAExtension('ohem_cpp', ['csrc/ohem_label_kernel.cu']), ], cmdclass={'build_ext': cpp_extension.BuildExtension})
"Removing them to avoid compilation problems.") os.environ[FLAG] = re.sub(r' -std=[^ ]*', '', os.environ[FLAG]) from setuptools import setup import torch from torch.utils import cpp_extension import glob ext_modules = [ cpp_extension.CppExtension( "splatting.cpu", ["cpp/splatting.cpp"], ), ] if torch.cuda.is_available(): ext_modules.append( cpp_extension.CUDAExtension( "splatting.cuda", ["cuda/splatting_cuda.cpp", "cuda/splatting.cu"], ), ) setup( name="splatting", ext_modules=ext_modules, cmdclass={"build_ext": cpp_extension.BuildExtension}, packages=["splatting"], install_requires=["torch"], extras_require={"dev": ["pytest", "pytest-cov", "pre-commit"]}, )