コード例 #1
0
ファイル: model.py プロジェクト: rmassidda/bisturi
    def forward_hook(module, input, output, module_name=None):
        # Compose module id
        module_iter = counter[module_name]
        module_id = (module_name, module_iter)

        # Check if the module has to be altered
        if module_id in dirs:
            # TODO: handle convolutional layers

            # TODO: use canonical basis
            if basis[module_id] is None:
                basis[module_id] = torch.identity(output)

            # Change basis
            output = output @ basis[module_id]

            # Zero out the directions
            mask = torch.ones_like(output)
            mask[:, dirs[module_id]] = 0
            output = output * mask

            # Replace the directions with constant mu
            mask = torch.zeros_like(output)
            mask[:, dirs[module_id]] = mu
            output = output + mask

        # Update counter
        counter[module_name] += 1

        return output
コード例 #2
0
def Likelihood_Y_Z(MuZ,SigmaZ,H,Y,beta):
    MuY=H@MuZ
    (d,N)=MuY.size()
    totalTerm=0
    #logdetP=float(0)
    for i in range(N):
        yi=Y[:,i]
        mui=MuY[:,i]
        deviation=yi-mui

        outerProduct=torch.gres(deviation,deviation.transpose(0,1))
        Sigmai=torch.diag(SigmaZ[:,i])
        Covi=(H@Sigmai)@H.transpose(0,1)+(1/beta)*torch.identity(d)
        Pr=torch.inverse(Covi)
        expTerm=torch.sum((outerProduct*Pr))
        logdet=torch.log(torch.det(Pr))
        #print('Determinant is:', determin)
        #print(Covi)
        #prod*=1/(math.exp(0.5*expTerm)*math.sqrt(lin.det(Covi)))
        totalTerm=totalTerm+0.5*(logdet-expTerm)

    return totalTerm
コード例 #3
0
ファイル: ops.py プロジェクト: DwightFoster/Pytorch-TecoGAN
def random_flip(input, decision):
    identity = torch.identity()
    f1 = identity(input)
    f2 = torch.flip(input, dim=3)
    return torch.where(torch.less(decision, 0.5), f2, f1)
コード例 #4
0

def batchnorm3d_to_instancenorm3d(model):
    conversion_count = 0
    for name, module in reversed(model._modules.items()):
        if len(list(module.children())) > 0:
            # recurse
            model._modules[
                name], num_converted = batchnorm3d_to_instancenorm3d(module)
            conversion_count += num_converted

        if isinstance(module, nn.BatchNorm3d):
            layer_new = nn.InstanceNorm3d(module.num_features,
                                          eps=module.eps,
                                          momentum=module.momentum,
                                          affine=module.affine,
                                          track_running_stats=False)
            layer_new.weight = module.weight
            layer_new.bias = module.bias
            model._modules[name] = layer_new
            conversion_count += 1

    return model, conversion_count


if __name__ == '__main__':
    model = torch.identity()
    model2 = deepcopy(model).cpu()
    new_model, count = batchnorm3d_to_instancenorm3d(model2, nn.BatchNorm3d,
                                                     nn.InstanceNorm3d)