def export_to_bioimageio(checkpoint, output): input_data = _load_data() postprocessing = None offsets = [ [-1, 0], [0, -1], [-3, 0], [0, -3], [-9, 0], [0, -9], [-27, 0], [0, -27] ] config = {"mws": {"offsets": offsets}} name = "EpitheliaAffinityModel" tags = ["u-net", "segmentation"] cite = get_default_citations(model="UNet2d", model_output="affinities") doc = "Affinity prediction for epithelia cells" export_bioimageio_model( checkpoint, output, input_data, name=name, authors=[{"name": "Constantin Pape; @constantinpape"}], tags=tags, license="CC-BY-4.0", documentation=doc, git_repo="https://github.com/constantinpape/torch-em.git", cite=cite, model_postprocessing=postprocessing, input_optional_parameters=False, config=config )
def export_to_bioimageio(checkpoint, output, input_, affs_to_bd, additional_formats): root, ckpt_name = os.path.split(checkpoint) organelle = os.path.split(root)[0] assert organelle in ("cells", "mitochondria", "nuclei"), organelle if input_ is None: input_data = None else: input_data = _load_data(input_, organelle) is_aff_model = "affinity" in ckpt_name if is_aff_model and affs_to_bd: if organelle in ("cells", ): postprocessing = "affinities_to_boundaries_anisotropic" elif organelle in ("mitochondria", "nuclei"): postprocessing = "affinities_with_foreground_to_boundaries3d" else: postprocessing = None if is_aff_model and affs_to_bd: is_aff_model = False name, description = _get_name_and_description(is_aff_model, organelle) tags = [ "unet", organelle, "instance-segmentation", "electron-microscopy", "platynereis" ] tags += ["boundary-prediction" ] if is_aff_model else ["affinity-prediction"] cite = get_default_citations( model="AnisotropicUNet", model_output="affinities" if is_aff_model else "boundaries") cite["data"] = "https://doi.org/10.1101/2020.02.26.961037" doc = _get_doc(checkpoint, name, organelle) if additional_formats is None: additional_formats = [] export_bioimageio_model( checkpoint, output, input_data=input_data, name=name, description=description, authors=[{ "name": "Constantin Pape; @constantinpape" }], tags=tags, license="CC-BY-4.0", documentation=doc, git_repo="https://github.com/constantinpape/torch-em.git", cite=cite, model_postprocessing=postprocessing, input_optional_parameters=False, for_deepimagej="torchscript" in additional_formats, links=[get_bioimageio_dataset_id("platynereis")]) add_weight_formats(output, additional_formats)
def export_to_bioimageio(checkpoint, input_, output, affs_to_bd, additional_formats): ckpt_name = os.path.split(checkpoint)[1] ndim = 3 if "3d" in ckpt_name else 2 input_data = _load_data(input_, ndim) is_aff_model = "affinity" in ckpt_name if is_aff_model and affs_to_bd: postprocessing = f"affinities_to_boundaries{ndim}d" else: postprocessing = None if is_aff_model and affs_to_bd: is_aff_model = False if is_aff_model: offsets = [[-1, 0], [0, -1], [-3, 0], [0, -3], [-9, 0], [0, -9], [-27, 0], [0, -27]] config = {"mws": {"offsets": offsets}} else: config = {} name = _get_name(is_aff_model, ndim) tags = [ "unet", "neurons", "instance-segmentation", "electron-microscopy", "isbi2012-challenge" ] tags += ["boundary-prediction" ] if is_aff_model else ["affinity-prediction"] cite = get_default_citations( model="UNet2d" if ndim == 2 else "AnisotropicUNet", model_output="affinities" if is_aff_model else "boundaries") cite["data"] = "https://doi.org/10.3389/fnana.2015.00142" doc = _get_doc(is_aff_model, ndim) if additional_formats is None: additional_formats = [] export_biomageio_model( checkpoint, output, input_data, name=name, authors=[{ "name": "Constantin Pape; @constantinpape" }], tags=tags, license="CC-BY-4.0", documentation=doc, git_repo="https://github.com/constantinpape/torch-em.git", cite=cite, model_postprocessing=postprocessing, input_optional_parameters=False, for_deepimagej="torchscript" in additional_formats, links=[get_bioimageio_dataset_id("isbi2012")], config=config) add_weight_formats(output, additional_formats)
def export_to_bioimageio(checkpoint, output, input_, affs_to_bd, additional_formats): ckpt_name = os.path.split(checkpoint)[1] if input_ is None: input_data = None else: input_data = imageio.imread(input_) input_data = input_data[:512, :512] input_data = input_data.transpose((2, 0, 1)) assert input_data.shape[0] == 3, f"{input_data.shape}" is_aff_model = "affinity" in ckpt_name if is_aff_model and affs_to_bd: postprocessing = "affinities_with_foreground_to_boundaries2d" else: postprocessing = None if is_aff_model and affs_to_bd: is_aff_model = False name = _get_name(is_aff_model) tags = ["unet", "instance-segmentation", "nuclei", "whole-slide-imaging"] tags += ["boundary-prediction" ] if is_aff_model else ["affinity-prediction"] # eventually we should refactor the citation logic cite = get_default_citations( model="UNet2d", model_output="affinities" if is_aff_model else "boundaries") cite["data"] = "https://ieeexplore.ieee.org/document/8880654" doc = _get_doc(is_aff_model) if additional_formats is None: additional_formats = [] export_biomageio_model( checkpoint, output, input_data=input_data, name=name, authors=[{ "name": "Constantin Pape; @constantinpape" }], tags=tags, license="CC-BY-4.0", documentation=doc, git_repo="https://github.com/constantinpape/torch-em.git", cite=cite, model_postprocessing=postprocessing, input_optional_parameters=False, # need custom deepimagej fields if we have torchscript export for_deepimagej="torchscript" in additional_formats, links=[get_bioimageio_dataset_id("monuseg")]) add_weight_formats(output, additional_formats)
def export_model(): import imageio import h5py from torch_em.util import export_biomageio_model, get_default_citations from bioimageio.spec.shared import yaml with h5py.File("./data/gt_image_000.h5", "r") as f: input_data = f["raw/serum_IgG/s0"][:256, :256] imageio.imwrite("./cover.jpg", input_data) doc = "Example Model: Different Output Shape" cite = get_default_citations(model="UNet2d") export_biomageio_model( "./checkpoints/diff-output-shape", "./exported", input_data=input_data, authors=[{"name": "Constantin Pape; @constantinpape"}], tags=["segmentation"], license="CC-BY-4.0", documentation=doc, git_repo="https://github.com/constantinpape/torch-em.git", cite=cite, covers=["./cover.jpg"], input_optional_parameters=False ) rdf_path = "./exported/rdf.yaml" with open(rdf_path, "r") as f: rdf = yaml.load(f) # update the shape descriptions rdf["inputs"][0]["shape"] = {"min": [1, 1, 32, 32], "step": [0, 0, 16, 16]} rdf["outputs"][0]["shape"] = {"reference_input": "input", "offset": [0, 0, 0, 0], "scale": [1, 1, 0.5, 0.5]} # update the network description rdf["source"] = "./resize_unet.py:ResizeUNet" rdf["kwargs"] = dict(in_channels=1, out_channels=1, depth=3, initial_features=16) copyfile("./resize_unet.py", "./exported/resize_unet.py") with open(rdf_path, "w") as f: yaml.dump(rdf, f)
def export_model(): import h5py from torch_em.util import export_biomageio_model, get_default_citations from bioimageio.spec.shared import yaml with h5py.File("./data/gt_image_000.h5", "r") as f: input_data = f["raw/serum_IgG/s0"][:256, :256] doc = "Example Model: Fixed Shape" cite = get_default_citations(model="UNet2d") export_biomageio_model( "./checkpoints/fixed-shape", "./exported", input_data=input_data, authors=[{ "name": "Constantin Pape; @constantinpape" }], tags=["segmentation"], license="CC-BY-4.0", documentation=doc, git_repo="https://github.com/constantinpape/torch-em.git", cite=cite, input_optional_parameters=False) shape = (1, 1) + input_data.shape assert len(shape) == 4 # replace the shape rdf_path = "./exported/rdf.yaml" with open(rdf_path, "r") as f: rdf = yaml.load(f) rdf["inputs"][0]["shape"] = shape rdf["outputs"][0]["shape"] = shape with open(rdf_path, "w") as f: yaml.dump(rdf, f)
def export_to_bioimageio(checkpoint, output, input_, affs_to_bd, additional_formats): ckpt_name = os.path.split(checkpoint)[1] if input_ is None: input_data = None else: input_data = _load_data(input_) is_aff_model = "affinity" in ckpt_name if is_aff_model and affs_to_bd: postprocessing = "affinities_to_boundaries_anisotropic" else: postprocessing = None if is_aff_model and affs_to_bd: is_aff_model = False name, description = _get_name_and_description(is_aff_model) tags = [ "unet", "neurons", "instance-segmentation", "electron-microscopy", "cremi", "connectomics", "3d" ] tags += ["boundary-prediction" ] if is_aff_model else ["affinity-prediction"] # eventually we should refactor the citation logic cite = get_default_citations( model="AnisotropicUNet", model_output="affinities" if is_aff_model else "boundaries") cite["data"] = "https://cremi.org" doc = _get_doc(is_aff_model, checkpoint, name) if is_aff_model: offsets = [[-1, 0, 0], [0, -1, 0], [0, 0, -1], [-2, 0, 0], [0, -3, 0], [0, 0, -3], [-3, 0, 0], [0, -9, 0], [0, 0, -9], [-4, 0, 0], [0, -27, 0], [0, 0, -27]] config = {"mws": {"offsets": offsets}} else: config = {} if additional_formats is None: additional_formats = [] export_bioimageio_model( checkpoint, output, input_data=input_data, name=name, description=description, authors=[{ "name": "Constantin Pape; @constantinpape" }], tags=tags, license="CC-BY-4.0", documentation=doc, git_repo="https://github.com/constantinpape/torch-em.git", cite=cite, model_postprocessing=postprocessing, input_optional_parameters=False, for_deepimagej="torchscript" in additional_formats, links=[get_bioimageio_dataset_id("cremi")], config=config) if additional_formats: add_weight_formats(output, additional_formats)
def export_to_bioimageio(checkpoint, output, input_, affs_to_bd, additional_formats): ckpt_name = os.path.split(checkpoint)[1] if input_ is None: input_data = None else: input_data = imageio.imread(input_) is_aff_model = "affinity" in ckpt_name if is_aff_model and affs_to_bd: postprocessing = "affinities_with_foreground_to_boundaries2d" else: postprocessing = None if is_aff_model and affs_to_bd: is_aff_model = False name, description = _get_name_and_description(is_aff_model) tags = [ "fluorescence-light-microscopy", "nuclei", "unet", "instance-segmentation", "2d" ] # eventually we should refactor the citation logic cite = get_default_citations( model="UNet2d", model_output="affinities" if is_aff_model else "boundaries") cite["data"] = "https://www.nature.com/articles/s41592-019-0612-7" doc = _get_doc(is_aff_model, checkpoint, name) if is_aff_model: offsets = [[-1, 0], [0, -1], [-3, 0], [0, -3], [-9, 0], [0, -9], [-27, 0], [0, -27]] config = {"mws": {"offsets": offsets}} else: config = {} if additional_formats is None: additional_formats = [] export_bioimageio_model( checkpoint, output, input_data=input_data, name=name, authors=[{ "name": "Constantin Pape", "affiliation": "EMBL Heidelberg" }], tags=tags, license="CC-BY-4.0", documentation=doc, git_repo="https://github.com/constantinpape/torch-em.git", cite=cite, model_postprocessing=postprocessing, input_optional_parameters=False, description=description, # need custom deepimagej fields if we have torchscript export for_deepimagej="torchscript" in additional_formats, links=[get_bioimageio_dataset_id("dsb")], config=config, maintainers=[{ "github_user": "******" }], ) add_weight_formats(output, additional_formats)
def export_to_bioimageio(checkpoint, output, input_, affs_to_bd, additional_formats): ckpt_name = os.path.split(checkpoint)[1] if input_ is None: input_data = None else: with h5py.File(input_, "r") as f: input_data = f["raw/serum_IgG/s0"][:512, :512] is_aff_model = "affinity" in ckpt_name if is_aff_model and affs_to_bd: postprocessing = "affinities_with_foreground_to_boundaries2d" else: postprocessing = None if is_aff_model and affs_to_bd: is_aff_model = False name, description = _get_name_and_description(is_aff_model) tags = [ "unet", "cells", "high-content-microscopy", "instance-segmentation", "covid19", "immunofluorescence-microscopy", "2d" ] # eventually we should refactor the citation logic covid_if_pub = "https://doi.org/10.1002/bies.202000257" cite = get_default_citations( model="UNet2d", model_output="affinities" if is_aff_model else "boundaries") cite["data"] = covid_if_pub if not is_aff_model: cite["segmentation algorithm"] = covid_if_pub doc = _get_doc(is_aff_model, checkpoint, name) if is_aff_model: offsets = [[-1, 0], [0, -1], [-3, 0], [0, -3], [-9, 0], [0, -9], [-27, 0], [0, -27]] config = {"mws": {"offsets": offsets}} else: config = {} if additional_formats is None: additional_formats = [] export_bioimageio_model( checkpoint, output, input_data=input_data, name=name, authors=[{ "name": "Constantin Pape", "affiliation": "EMBL Heidelberg" }], tags=tags, license="CC-BY-4.0", documentation=doc, description=description, git_repo="https://github.com/constantinpape/torch-em.git", cite=cite, config=config, model_postprocessing=postprocessing, input_optional_parameters=False, # need custom deepimagej fields if we have torchscript export for_deepimagej="torchscript" in additional_formats, links=[get_bioimageio_dataset_id("covid_if")], maintainers=[{ "github_user": "******" }], ) add_weight_formats(output, additional_formats)
def export_model(): import imageio import h5py from torch_em.util import add_weight_formats, export_biomageio_model, get_default_citations from bioimageio.spec.shared import yaml with h5py.File("./data/gt_image_000.h5", "r") as f: input_data = [ f["raw/serum_IgG/s0"][:256, :256], f["raw/nuclei/s0"][:256, :256], ] imageio.imwrite("./cover.jpg", input_data[0]) doc = "Example Model: Different Output Shape" cite = get_default_citations(model="UNet2d") export_biomageio_model( "./checkpoints/multi-tensor", "./exported", input_data=input_data, authors=[{ "name": "Constantin Pape; @constantinpape" }], tags=["segmentation"], license="CC-BY-4.0", documentation=doc, git_repo="https://github.com/constantinpape/torch-em.git", cite=cite, covers=["./cover.jpg"], input_optional_parameters=False) add_weight_formats("./exported", ["onnx", "torchscript"]) rdf_path = "./exported/rdf.yaml" with open(rdf_path, "r") as f: rdf = yaml.load(f) # update the inputs / output descriptions rdf["inputs"][0]["name"] = "input0" rdf["inputs"][0]["shape"] = {"min": [1, 1, 32, 32], "step": [0, 0, 16, 16]} input1 = deepcopy(rdf["inputs"][0]) input1["name"] = "input1" rdf["inputs"].append(input1) rdf["outputs"][0]["name"] = "output0" rdf["outputs"][0]["shape"] = { "reference_input": "input0", "offset": [0, 0, 0, 0], "scale": [1, 1, 1, 1] } output1 = deepcopy(rdf["outputs"][0]) output1["name"] = "output1" output1["shape"]["reference_input"] = "input1" rdf["outputs"].append(output1) # update the network description rdf["source"] = "./multi_tensor_unet.py:MultiTensorUNet" rdf["kwargs"] = dict(in_channels=2, out_channels=2, depth=3, initial_features=16) copyfile("./multi_tensor_unet.py", "./exported/multi_tensor_unet.py") with open(rdf_path, "w") as f: yaml.dump(rdf, f)
def export_to_bioimageio(checkpoint, output, input_, affs_to_bd, additional_formats): root, ckpt_name = os.path.split(checkpoint) specimen = os.path.split(root)[0] assert specimen in ("ovules", "roots"), specimen is2d = checkpoint.endswith('2d') ndim = 2 if is2d else 3 if input_ is None: input_data = None else: input_data = _load_data(input_, is2d) is_aff_model = "affinity" in ckpt_name if is_aff_model and affs_to_bd: postprocessing = "affinities_to_boundaries3d" else: postprocessing = None if is_aff_model and affs_to_bd: is_aff_model = False name = _get_name(is_aff_model, specimen, ndim) tags = [ "u-net", f"{specimen}-segmentation", "segmentation", "light-microscopy", "arabidopsis" ] if specimen == "ovules": tags += ["ovules", "confocal-microscopy"] else: tags += ["primordial-root", "light-sheet-microscopy"] tags += ["boundary-prediction" ] if is_aff_model else ["affinity-prediction"] # eventually we should refactor the citation logic plantseg_pub = "https://doi.org/10.7554/eLife.57613.sa2" cite = get_default_citations( model="UNet2d" if is2d else "UNet3d", model_output="affinities" if is_aff_model else "boundaries") cite["data"] = plantseg_pub cite["segmentation algorithm"] = plantseg_pub doc = _get_doc(is_aff_model, specimen, ndim) export_biomageio_model( checkpoint, output, input_data=input_data, name=name, authors=[{ "name": "Constantin Pape; @constantinpape" }], tags=tags, license='CC-BY-4.0', documentation=doc, git_repo='https://github.com/constantinpape/torch-em.git', cite=cite, model_postprocessing=postprocessing, input_optional_parameters=False, # need custom deepimagej fields if we have torchscript export for_deepimagej="torchscript" in additional_formats, links=[get_bioimageio_dataset_id("ovules")]) add_weight_formats(output, additional_formats)
def export_to_bioimageio(checkpoint, input_, output, affs_to_bd, additional_formats): root, ckpt_name = os.path.split(checkpoint) if input_ is None: input_data = None else: input_data = _load_data(input_) is_aff_model = "affinity" in ckpt_name if is_aff_model and affs_to_bd: postprocessing = "affinities_with_foreground_to_boundaries3d" else: postprocessing = None if is_aff_model and affs_to_bd: is_aff_model = False name, desc = _get_name_and_description(is_aff_model) if is_aff_model: offsets = [[-1, 0, 0], [0, -1, 0], [0, 0, -1], [-2, 0, 0], [0, -3, 0], [0, 0, -3], [-3, 0, 0], [0, -9, 0], [0, 0, -9]] config = {"mws": {"offsets": offsets}} else: config = {} cite = get_default_citations( model="AnisotropicUNet", model_output="affinities" if is_aff_model else "boundaries") cite["data"] = "https://doi.org/10.1007/978-3-030-59722-1_7" tags = [ "3d", "electron-microscopy", "mitochondria", "instance-segmentation", "unet" ] doc = _get_doc(is_aff_model, checkpoint, name) if additional_formats is None: additional_formats = [] export_bioimageio_model( checkpoint, output, input_data=input_data, name=name, description=desc, authors=[{ "name": "Constantin Pape; @constantinpape" }], tags=tags, license="CC-BY-4.0", documentation=doc, git_repo="https://github.com/constantinpape/torch-em.git", cite=cite, model_postprocessing=postprocessing, input_optional_parameters=False, for_deepimagej="torchscript" in additional_formats, links=[get_bioimageio_dataset_id("mitoem")], maintainers=[{ "github_user": "******" }], config=config, ) add_weight_formats(output, additional_formats)