コード例 #1
0
def test_gae():
    model = GAE(encoder=lambda x: x)
    model.reset_parameters()

    x = torch.Tensor([[1, -1], [1, 2], [2, 1]])
    z = model.encode(x)
    assert z.tolist() == x.tolist()

    adj = model.decoder.forward_all(z)
    assert adj.tolist() == torch.sigmoid(
        torch.Tensor([[+2, -1, +1], [-1, +5, +4], [+1, +4, +5]])).tolist()

    edge_index = torch.tensor([[0, 1], [1, 2]])
    value = model.decode(z, edge_index)
    assert value.tolist() == torch.sigmoid(torch.Tensor([-1, 4])).tolist()

    edge_index = torch.tensor([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
                               [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]])
    data = Data(edge_index=edge_index)
    data.num_nodes = edge_index.max().item() + 1
    data = train_test_split_edges(data, val_ratio=0.2, test_ratio=0.3)

    z = torch.randn(11, 16)
    loss = model.recon_loss(z, data.train_pos_edge_index)
    assert loss.item() > 0

    auc, ap = model.test(z, data.val_pos_edge_index, data.val_neg_edge_index)
    assert auc >= 0 and auc <= 1 and ap >= 0 and ap <= 1
コード例 #2
0
def test_gae():
    model = GAE(encoder=lambda x: x)
    model.reset_parameters()

    x = torch.Tensor([[1, -1], [1, 2], [2, 1]])
    z = model.encode(x)
    assert z.tolist() == x.tolist()

    adj = model.decode(z)
    assert adj.tolist() == torch.sigmoid(
        torch.Tensor([[+2, -1, +1], [-1, +5, +4], [+1, +4, +5]])).tolist()

    edge_index = torch.tensor([[0, 1], [1, 2]])
    value = model.decode_indices(z, edge_index)
    assert value.tolist() == torch.sigmoid(torch.Tensor([-1, 4])).tolist()

    edge_index = torch.tensor([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
                               [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]])
    data = Data(edge_index=edge_index)
    data = model.split_edges(data, val_ratio=0.2, test_ratio=0.3)

    assert data.val_pos_edge_index.size() == (2, 2)
    assert data.val_neg_edge_index.size() == (2, 2)
    assert data.test_pos_edge_index.size() == (2, 3)
    assert data.test_neg_edge_index.size() == (2, 3)
    assert data.train_pos_edge_index.size() == (2, 5)
    assert data.train_neg_adj_mask.size() == (11, 11)
    assert data.train_neg_adj_mask.sum().item() == (11**2 - 11) / 2 - 4 - 6 - 5

    z = torch.randn(11, 16)
    loss = model.recon_loss(z, data.train_pos_edge_index)
    assert loss.item() > 0

    auc, ap = model.test(z, data.val_pos_edge_index, data.val_neg_edge_index)
    assert auc >= 0 and auc <= 1 and ap >= 0 and ap <= 1
コード例 #3
0
def test_gae():
    model = GAE(encoder=lambda x: x)
    model.reset_parameters()

    x = torch.Tensor([[1, -1], [1, 2], [2, 1]])
    z = model.encode(x)
    assert z.tolist() == x.tolist()

    adj = model.decoder.forward_all(z)
    assert adj.tolist() == torch.sigmoid(
        torch.Tensor([[+2, -1, +1], [-1, +5, +4], [+1, +4, +5]])).tolist()

    edge_index = torch.tensor([[0, 1], [1, 2]])
    value = model.decode(z, edge_index)
    assert value.tolist() == torch.sigmoid(torch.Tensor([-1, 4])).tolist()

    edge_index = torch.tensor([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
                               [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]])
    data = Data(edge_index=edge_index, num_nodes=11)
    transform = RandomLinkSplit(split_labels=True,
                                add_negative_train_samples=False)
    train_data, val_data, test_data = transform(data)

    z = torch.randn(11, 16)
    loss = model.recon_loss(z, train_data.pos_edge_label_index)
    assert loss.item() > 0

    auc, ap = model.test(z, val_data.pos_edge_label_index,
                         val_data.neg_edge_label_index)
    assert auc >= 0 and auc <= 1 and ap >= 0 and ap <= 1
コード例 #4
0
def train(dataset, args, writer = None):
    task = args.task
    test_loader = loader = DataLoader(dataset, batch_size=args.batch_size, shuffle=True)

    if task == 'link':
        model = GAE(models.GNNStack(dataset.num_node_features, args.hidden_dim, int(dataset.num_classes), 
                            args))
    elif task == 'node':
        model = models.GNNStack(dataset.num_node_features, args.hidden_dim, int(dataset.num_classes), 
                            args)
    else:
        raise RuntimeError("Unknown task.")
    metrics_for_labels = True if args.metrics_for_labels == 'True' else False
    scheduler, opt = build_optimizer(args, model.parameters())
    print("Training \nModel: {}, Data representation: {}. Dataset: {}, Task type: {}". format(args.model_name, args.graph_type, args.dataset, args.task))
    metric_text = 'test accuracy' if task == 'node' else 'test precision'
    for epoch in range(args.epochs):
        total_loss = 0
        model.train()
        for batch in loader:
            opt.zero_grad()
            if task == 'node':
                pred = model(batch)
                label = batch.y
                pred = pred[batch.train_mask]
                label = label[batch.train_mask]
                loss = model.loss(pred, label)
            else:
                train_pos_edge_index = batch.train_pos_edge_index
                z = model.encode(batch)
                loss = model.recon_loss(z, train_pos_edge_index)
            loss.backward()
            opt.step()
            total_loss += loss.item() * batch.num_graphs
        total_loss /= len(loader.dataset)
        if writer == None:
            print(total_loss)
        else:
            writer.add_scalar("loss", total_loss, epoch)

        if epoch % 10 == 0:
            test_metric, _ = test(loader, model, task = task)
            if writer == None:
                print(test_metric, metric_text)
            else:
                writer.add_scalar(metric_text, test_metric, epoch)
        if metrics_for_labels == True and epoch == args.epochs -1:
            _, labels_metrics = test(loader, model, task = task, metrics_for_labels=metrics_for_labels)
            print('{} for labels:\n {}'.format(metric_text, labels_metrics))
コード例 #5
0
ファイル: train.py プロジェクト: ursulean/LSGM
def run_experiment(args):
    """
    Performing experiment for the given arguments
    """
    dataset, data = load_data(args.dataset)
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    # Define Model
    encoder = create_encoder(args.model, dataset.num_features,
                             args.latent_dim).to(device)
    decoder = create_decoder(args.decoder).to(device)

    if args.model == 'GAE':
        model = GAE(encoder=encoder, decoder=decoder).to(device)
    else:
        model = VGAE(encoder=encoder, decoder=decoder).to(device)

    # Split edges of a torch_geometric.data.Data object into pos negative train/val/test edges
    # default ratios of positive edges: val_ratio=0.05, test_ratio=0.1
    print("Data.edge_index.size", data.edge_index.size(1))
    data = model.split_edges(data)
    node_features, train_pos_edge_index = data.x.to(
        device), data.train_pos_edge_index.to(device)
    optimizer = torch.optim.Adam(model.parameters(), lr=0.01)

    def train_epoch():
        """
        Performing training over a single epoch and optimize over loss
        :return: log - loss of training loss
        """
        # Todo: Add logging of results

        model.train()
        optimizer.zero_grad()
        # Compute latent embedding Z
        latent_embeddings = model.encode(node_features, train_pos_edge_index)

        # Calculate loss and
        loss = model.recon_loss(latent_embeddings, train_pos_edge_index)
        if args.model in ['VGAE']:
            loss = loss + (1 / data.num_nodes) * model.kl_loss()

        # Compute gradients
        loss.backward()
        # Perform optimization step
        optimizer.step()

        # print("Train-Epoch: {} Loss: {}".format(epoch, loss))

        # ToDo: Add logging via Tensorboard
        log = {'loss': loss}

        return log

    def test(pos_edge_index, neg_edge_index):
        model.eval()
        with torch.no_grad():
            # compute latent var
            z = model.encode(node_features, train_pos_edge_index)

        # model.test return - AUC, AP
        return model.test(z, pos_edge_index, neg_edge_index)

    def test_naive_graph(z, sample_size=1000):

        if args.sample_dense_evaluation:
            graph_type = "sampled"
            z_sample, index_mapping = sample_graph(z, sample_size)
            t = time.time()
            adjacency = model.decoder.forward_all(
                z_sample, sigmoid=(args.decoder == 'dot'))
        else:
            graph_type = "full"
            t = time.time()
            adjacency = model.decoder.forward_all(
                z, sigmoid=(args.decoder == 'dot'))

        print(f"Computing {graph_type} graph took {time.time() - t} seconds.")
        print(
            f"Adjacency matrix takes {adjacency.element_size() * adjacency.nelement() / 10 ** 6} MB of memory."
        )

        if args.min_sim_absolute_value is None:
            args.min_sim_absolute_value, _ = sample_percentile(
                args.min_sim,
                adjacency,
                dist_measure=args.decoder,
                sample_size=sample_size)

        if args.sample_dense_evaluation:
            precision, recall = sampled_dense_precision_recall(
                data, adjacency, index_mapping, args.min_sim_absolute_value)
        else:
            precision, recall = dense_precision_recall(
                data, adjacency, args.min_sim_absolute_value)

        print("Predicted {} adjacency matrix has precision {} and recall {}!".
              format(graph_type, precision, recall))

        return precision, recall

    def sample_graph(z, sample_size):
        N, D = z.shape

        sample_size = min(sample_size, N)
        sample_ix = np.random.choice(np.arange(N),
                                     size=sample_size,
                                     replace=False)

        # Returns the sampled embeddings, and a mapping from their indices to the originals
        return z[sample_ix], {i: sample_ix[i] for i in np.arange(sample_size)}

    def test_compare_lsh_naive_graphs(z, assure_correctness=True):
        """

        :param z:
        :param assure_correctness:
        :return:
        """
        # Naive Adjacency-Matrix (Non-LSH-Version)
        t = time.time()
        # Don't use sigmoid in order to directly compare thresholds with LSH
        naive_adjacency = model.decoder.forward_all(
            z, sigmoid=(args.decoder == 'dot'))
        naive_time = time.time() - t
        naive_size = naive_adjacency.element_size() * naive_adjacency.nelement(
        ) / 10**6

        if args.min_sim_absolute_value is None:
            args.min_sim_absolute_value, _ = sample_percentile(
                args.min_sim, z, dist_measure=args.decoder)

        print(
            "______________________________Naive Graph Computation KPI____________________________________________"
        )
        print(f"Computing naive graph took {naive_time} seconds.")
        print(f"Naive adjacency matrix takes {naive_size} MB of memory.")

        # LSH-Adjacency-Matrix:
        t = time.time()
        lsh_adjacency = LSHDecoder(bands=args.lsh_bands,
                                   rows=args.lsh_rows,
                                   verbose=True,
                                   assure_correctness=assure_correctness,
                                   sim_thresh=args.min_sim_absolute_value)(z)
        lsh_time = time.time() - t
        lsh_size = lsh_adjacency.element_size() * lsh_adjacency._nnz() / 10**6

        print(
            "__________________________________LSH Graph Computation KPI__________________________________________"
        )
        print(f"Computing LSH graph took {lsh_time} seconds.")
        print(f"Sparse adjacency matrix takes {lsh_size} MB of memory.")

        print(
            "________________________________________Precision-Recall_____________________________________________"
        )
        # 1) Evaluation: Both Adjacency matrices against ground truth graph
        naive_precision, naive_recall = dense_precision_recall(
            data, naive_adjacency, args.min_sim_absolute_value)

        lsh_precision, lsh_recall = sparse_precision_recall(
            data, lsh_adjacency)

        print(
            f"Naive-Precision {naive_precision}; Naive-Recall {naive_recall}")
        print(f"LSH-Precision {lsh_precision}; LSH-Recall {lsh_recall}")

        print(
            "_____________________________Comparison Sparse vs Dense______________________________________________"
        )
        # 2) Evation: Compare both adjacency matrices against each other
        compare_precision, compare_recall = sparse_v_dense_precision_recall(
            naive_adjacency, lsh_adjacency, args.min_sim_absolute_value)
        print(
            f"LSH sparse matrix has {compare_precision} precision and {compare_recall} recall w.r.t. the naively generated dense matrix!"
        )

        return naive_precision, naive_recall, naive_time, naive_size, lsh_precision, lsh_recall, lsh_time, lsh_size, compare_precision, compare_recall

    # Training routine
    early_stopping = EarlyStopping(args.use_early_stopping,
                                   patience=args.early_stopping_patience,
                                   verbose=True)

    logs = []

    if args.load_model and os.path.isfile("checkpoint.pt"):
        print("Loading model from savefile...")
        model.load_state_dict(torch.load("checkpoint.pt"))

    if not (args.load_model and args.early_stopping_patience == 0):
        for epoch in range(1, args.epochs):
            log = train_epoch()
            logs.append(log)

            # Validation metrics
            val_auc, val_ap = test(data.val_pos_edge_index,
                                   data.val_neg_edge_index)
            print('Validation-Epoch: {:03d}, AUC: {:.4f}, AP: {:.4f}'.format(
                epoch, val_auc, val_ap))

            # Stop training if validation scores have not improved
            early_stopping(val_ap, model)
            if early_stopping.early_stop:
                print("Applying early-stopping")
                break
    else:
        epoch = 0

    # Load best encoder
    print("Load best model for evaluation.")
    model.load_state_dict(torch.load('checkpoint.pt'))
    print(
        "__________________________________________________________________________"
    )
    # Training is finished, calculate test metrics
    test_auc, test_ap = test(data.test_pos_edge_index,
                             data.test_neg_edge_index)
    print('Test Results: {:03d}, AUC: {:.4f}, AP: {:.4f}'.format(
        epoch, test_auc, test_ap))

    # Check if early stopping was applied or not - if not: model might not be done with training
    if args.epochs == epoch + 1:
        print("Model might need more epochs - Increase number of Epochs!")

    # Evaluate full graph
    latent_embeddings = model.encode(node_features, train_pos_edge_index)

    # Save embeddings to embeddings folder if flag is set
    if args.save_embeddings:
        embeddings_folder = osp.join(osp.dirname(osp.abspath(__file__)),
                                     'embeddings')
        if not osp.isdir(embeddings_folder):
            os.makedirs(embeddings_folder)

        torch.save(
            latent_embeddings,
            osp.join(embeddings_folder,
                     args.dataset + "_" + args.decoder + ".pt"))

    if not args.lsh:
        # Compute precision recall w.r.t the ground truth graph
        graph_precision, graph_recall = test_naive_graph(latent_embeddings)
        del model
        del encoder
        del decoder
        torch.cuda.empty_cache()
    else:
        # Precision w.r.t. the generated graph
        naive_precision, naive_recall, naive_time, naive_size, lsh_precision, \
        lsh_recall, lsh_time, lsh_size, \
        compare_precision, compare_recall = test_compare_lsh_naive_graphs(
            latent_embeddings)

        del model
        del encoder
        del decoder
        torch.cuda.empty_cache()

        return {
            'args': args,
            'test_auc': test_auc,
            'test_ap': test_ap,
            'naive_precision': naive_precision,
            'naive_recall': naive_recall,
            'naive_time': naive_time,
            'naive_size': naive_size,
            'lsh_precision': lsh_precision,
            'lsh_recall': lsh_recall,
            'lsh_time': lsh_time,
            'lsh_size': lsh_size,
            'compare_precision': compare_precision,
            'compare_recall': compare_recall
        }
コード例 #6
0
def run_GAE(input_data, output_dir, epochs=1000, lr=0.01, weight_decay=0.0005):
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    print('Device: '.ljust(32), device)
    print('Model Name: '.ljust(32), 'GAE')
    print('Model params:{:19} lr: {}   weight_decay: {}'.format(
        '', lr, weight_decay))
    print('Total number of epochs to run: '.ljust(32), epochs)
    print('*' * 70)

    data = input_data.clone().to(device)
    in_channels = data.num_features
    out_channels = data.num_classes.item()
    model = GAE(GAEncoder(in_channels, out_channels)).to(device)
    data = input_data.clone().to(device)
    split_data = model.split_edges(data)
    x, train_pos_edge_index, edge_attr = split_data.x.to(
        device), split_data.train_pos_edge_index.to(device), data.edge_attr.to(
            device)
    split_data.train_idx = split_data.test_idx = data.y = None
    optimizer = torch.optim.Adam(model.parameters(),
                                 lr=lr,
                                 weight_decay=weight_decay)
    train_losses, test_losses = [], []
    aucs = []
    aps = []
    model.train()
    for epoch in range(1, epochs + 1):
        train_loss = 0
        test_loss = 0
        optimizer.zero_grad()
        z = model.encode(x, train_pos_edge_index)
        train_loss = model.recon_loss(z, train_pos_edge_index)
        train_losses.append(train_loss)
        train_loss.backward()
        optimizer.step()

        model.eval()
        with torch.no_grad():
            z = model.encode(x, train_pos_edge_index)
        auc, ap = model.test(z, split_data.test_pos_edge_index,
                             split_data.test_neg_edge_index)
        test_loss = model.recon_loss(z, data.test_pos_edge_index)
        test_losses.append(test_loss.item())
        aucs.append(auc)
        aps.append(ap)

        figname = os.path.join(
            output_dir, "_".join((GAE.__name__, str(lr), str(weight_decay))))
        makepath(output_dir)

        if (epoch % int(epochs / 10) == 0):
            print(
                'Epoch: {}       Train loss: {}    Test loss: {}     AUC: {}    AP: {}'
                .format(epoch, train_loss, test_loss, auc, ap))
        if (epoch == epochs):
            print(
                '-' * 65,
                '\nFinal epoch: {}    Train loss: {}    Test loss: {}    AUC: {}    AP: {}'
                .format(epoch, train_loss, test_loss, auc, ap))
        log = 'Final epoch: {}    Train loss: {}    Test loss: {}    AUC: {}    AP: {}'.format(
            epoch, train_loss, test_loss, auc, ap)
        write_log(log, figname)
    print('-' * 65)

    plot_linkpred(train_losses, test_losses, aucs, aps, output_dir, epochs,
                  figname)
    return
コード例 #7
0
ファイル: perturb_edges.py プロジェクト: JunweiSUN/AutoGRL
def perturb_edges(data,
                  name,
                  remove_pct,
                  add_pct,
                  hidden_channels=16,
                  epochs=400):
    if remove_pct == 0 and add_pct == 0:
        return
    try:
        cached = pickle.load(
            open(f'{ROOT}/cache/edge/{name}_{remove_pct}_{add_pct}.pt', 'rb'))
        print(f'Use cached edge augmentation for dataset {name}')

        if data.setting == 'inductive':
            data.train_edge_index = cached
        else:
            data.edge_index = cached
        return
    except FileNotFoundError:
        try:
            A_pred, adj_orig = pickle.load(
                open(f'{ROOT}/cache/edge/{name}.pt', 'rb'))
            A = sample_graph_det(adj_orig, A_pred, remove_pct, add_pct)
            data.edge_index, _ = from_scipy_sparse_matrix(A)
            pickle.dump(
                data.edge_index,
                open(f'{ROOT}/cache/edge/{name}_{remove_pct}_{add_pct}.pt',
                     'wb'))
            return
        except FileNotFoundError:
            print(
                f'cache/edge/{name}_{remove_pct}_{add_pct}.pt not found! Regenerating it now'
            )

    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    if data.setting == 'inductive':
        train_data = Data(x=data.train_x,
                          ori_x=data.ori_x,
                          edge_index=data.train_edge_index,
                          y=data.train_y)
    else:
        train_data = deepcopy(data)

    edge_index = deepcopy(train_data.edge_index)
    train_data = train_test_split_edges(train_data,
                                        val_ratio=0.1,
                                        test_ratio=0)
    num_features = train_data.ori_x.shape[1]
    model = GAE(GCNEncoder(num_features, hidden_channels))
    model = model.to(device)
    x = train_data.ori_x.to(device)
    train_pos_edge_index = train_data.train_pos_edge_index.to(device)
    optimizer = torch.optim.Adam(model.parameters(), lr=0.01)

    best_val_auc = 0
    best_z = None
    for epoch in range(1, epochs + 1):
        model.train()
        optimizer.zero_grad()
        z = model.encode(x, train_pos_edge_index)
        loss = model.recon_loss(z, train_pos_edge_index)
        loss.backward()
        optimizer.step()

        model.eval()
        with torch.no_grad():
            z = model.encode(x, train_pos_edge_index)

        auc, ap = model.test(z, train_data.val_pos_edge_index,
                             train_data.val_neg_edge_index)
        print('Val | Epoch: {:03d}, AUC: {:.4f}, AP: {:.4f}'.format(
            epoch, auc, ap))
        if auc > best_val_auc:
            best_val_auc = auc
            best_z = deepcopy(z)

    A_pred = torch.sigmoid(torch.mm(z, z.T)).cpu().numpy()

    adj_orig = to_scipy_sparse_matrix(edge_index).asformat('csr')
    adj_pred = sample_graph_det(adj_orig, A_pred, remove_pct, add_pct)

    if data.setting == 'inductive':
        data.train_edge_index, _ = from_scipy_sparse_matrix(adj_pred)
    else:
        data.edge_index, _ = from_scipy_sparse_matrix(adj_pred)

    pickle.dump((A_pred, adj_orig), open(f'{ROOT}/cache/edge/{name}.pt', 'wb'))

    if data.setting == 'inductive':
        pickle.dump(
            data.train_edge_index,
            open(f'{ROOT}/cache/edge/{name}_{remove_pct}_{add_pct}.pt', 'wb'))
    else:
        pickle.dump(
            data.edge_index,
            open(f'{ROOT}/cache/edge/{name}_{remove_pct}_{add_pct}.pt', 'wb'))