コード例 #1
0
def test_gat_conv():
    in_channels, out_channels = (16, 32)
    edge_index = torch.tensor([[0, 0, 0, 1, 2, 3], [1, 2, 3, 0, 0, 0]])
    num_nodes = edge_index.max().item() + 1
    x = torch.randn((num_nodes, in_channels))

    conv = GATConv(in_channels, out_channels, heads=2, dropout=0.5)
    assert conv.__repr__() == 'GATConv(16, 32, heads=2)'
    assert conv(x, edge_index).size() == (num_nodes, 2 * out_channels)

    conv = GATConv(in_channels, out_channels, heads=2, concat=False)
    assert conv(x, edge_index).size() == (num_nodes, out_channels)
コード例 #2
0
def test_gat_conv():
    in_channels, out_channels = (16, 32)
    edge_index = torch.tensor([[0, 0, 0, 1, 2, 3], [1, 2, 3, 0, 0, 0]])
    num_nodes = edge_index.max().item() + 1
    x = torch.randn((num_nodes, in_channels))

    conv = GATConv(in_channels, out_channels, heads=2, dropout=0.0)
    assert conv.__repr__() == 'GATConv(16, 32, heads=2)'
    out = conv(x, edge_index)
    assert out.size() == (num_nodes, 2 * out_channels)
    assert conv((x, x), edge_index).tolist() == out.tolist()

    model = Net1()
    model.conv = conv.jittable(x=x, edge_index=edge_index)
    model = torch.jit.script(model)
    assert model(x, edge_index).tolist() == out.tolist()

    result = conv(x, edge_index, return_attention_weights=True)
    assert result[0].tolist() == out.tolist()
    assert result[1][0][:, :-num_nodes].tolist() == edge_index.tolist()
    assert result[1][1].size() == (edge_index.size(1) + num_nodes, 2)
    assert conv._alpha is None

    model = Net2()
    model.conv = conv.jittable(x=x, edge_index=edge_index)
    model = torch.jit.script(model)
    assert model(x, edge_index)[0].tolist() == result[0].tolist()
    assert model(x, edge_index)[1][0].tolist() == result[1][0].tolist()
    assert model(x, edge_index)[1][1].tolist() == result[1][1].tolist()

    conv = GATConv(in_channels, out_channels, heads=2, concat=False)
    out = conv(x, edge_index)
    assert out.size() == (num_nodes, out_channels)
    assert conv((x, x), edge_index).tolist() == out.tolist()

    model = Net1()
    model.conv = conv.jittable(x=x, edge_index=edge_index)
    model = torch.jit.script(model)
    assert model(x, edge_index).tolist() == out.tolist()

    result = conv(x, edge_index, return_attention_weights=True)
    assert result[0].tolist() == out.tolist()
    assert result[1][0][:, :-num_nodes].tolist() == edge_index.tolist()
    assert result[1][1].size() == (edge_index.size(1) + num_nodes, 2)
    assert conv._alpha is None

    model = Net2()
    model.conv = conv.jittable(x=x, edge_index=edge_index)
    model = torch.jit.script(model)
    assert model(x, edge_index)[0].tolist() == result[0].tolist()
    assert model(x, edge_index)[1][0].tolist() == result[1][0].tolist()
    assert model(x, edge_index)[1][1].tolist() == result[1][1].tolist()
コード例 #3
0
def test_gat_conv():
    in_channels, out_channels = (16, 32)
    edge_index = torch.tensor([[0, 0, 0, 1, 2, 3], [1, 2, 3, 0, 0, 0]])
    num_nodes = edge_index.max().item() + 1
    x = torch.randn((num_nodes, in_channels))

    conv = GATConv(in_channels, out_channels, heads=2, dropout=0.5)
    assert conv.__repr__() == 'GATConv(16, 32, heads=2)'
    assert conv(x, edge_index).size() == (num_nodes, 2 * out_channels)
    assert conv((x, None), edge_index).size() == (num_nodes, 2 * out_channels)
    out = conv(x, edge_index, return_attention_weights=True)
    assert out[0].size() == (num_nodes, 2 * out_channels)
    assert out[1].size() == (edge_index.size(1) + num_nodes, 2)
    assert conv.alpha is None

    conv = GATConv(in_channels, out_channels, heads=2, concat=False)
    assert conv(x, edge_index).size() == (num_nodes, out_channels)
    assert conv((x, None), edge_index).size() == (num_nodes, out_channels)
    out = conv(x, edge_index, return_attention_weights=True)
    assert out[0].size() == (num_nodes, out_channels)
    assert out[1].size() == (edge_index.size(1) + num_nodes, 2)
    assert conv.alpha is None
コード例 #4
0
def test_gat_conv():
    x1 = torch.randn(4, 8)
    x2 = torch.randn(2, 16)
    edge_index = torch.tensor([[0, 1, 2, 3], [0, 0, 1, 1]])
    row, col = edge_index
    adj = SparseTensor(row=row, col=col, sparse_sizes=(4, 4))

    conv = GATConv(8, 32, heads=2)
    assert conv.__repr__() == 'GATConv(8, 32, heads=2)'
    out = conv(x1, edge_index)
    assert out.size() == (4, 64)
    assert conv(x1, edge_index, size=(4, 4)).tolist() == out.tolist()
    assert torch.allclose(conv(x1, adj.t()), out, atol=1e-6)

    t = '(Tensor, Tensor, OptTensor, Size, NoneType) -> Tensor'
    jit = torch.jit.script(conv.jittable(t))
    assert jit(x1, edge_index).tolist() == out.tolist()
    assert jit(x1, edge_index, size=(4, 4)).tolist() == out.tolist()

    t = '(Tensor, SparseTensor, OptTensor, Size, NoneType) -> Tensor'
    jit = torch.jit.script(conv.jittable(t))
    assert torch.allclose(jit(x1, adj.t()), out, atol=1e-6)

    # Test `return_attention_weights`.
    result = conv(x1, edge_index, return_attention_weights=True)
    assert result[0].tolist() == out.tolist()
    assert result[1][0].size() == (2, 7)
    assert result[1][1].size() == (7, 2)
    assert result[1][1].min() >= 0 and result[1][1].max() <= 1
    assert conv._alpha is None

    result = conv(x1, adj.t(), return_attention_weights=True)
    assert torch.allclose(result[0], out, atol=1e-6)
    assert result[1].sizes() == [4, 4, 2] and result[1].nnz() == 7
    assert conv._alpha is None

    t = ('(Tensor, Tensor, OptTensor, Size, bool) -> '
         'Tuple[Tensor, Tuple[Tensor, Tensor]]')
    jit = torch.jit.script(conv.jittable(t))
    result = jit(x1, edge_index, return_attention_weights=True)
    assert result[0].tolist() == out.tolist()
    assert result[1][0].size() == (2, 7)
    assert result[1][1].size() == (7, 2)
    assert result[1][1].min() >= 0 and result[1][1].max() <= 1
    assert conv._alpha is None

    t = ('(Tensor, SparseTensor, OptTensor, Size, bool) -> '
         'Tuple[Tensor, SparseTensor]')
    jit = torch.jit.script(conv.jittable(t))
    result = jit(x1, adj.t(), return_attention_weights=True)
    assert torch.allclose(result[0], out, atol=1e-6)
    assert result[1].sizes() == [4, 4, 2] and result[1].nnz() == 7
    assert conv._alpha is None

    adj = adj.sparse_resize((4, 2))
    conv = GATConv((8, 16), 32, heads=2)
    assert conv.__repr__() == 'GATConv((8, 16), 32, heads=2)'

    out1 = conv((x1, x2), edge_index)
    out2 = conv((x1, None), edge_index, size=(4, 2))
    assert out1.size() == (2, 64)
    assert out2.size() == (2, 64)
    assert conv((x1, x2), edge_index, size=(4, 2)).tolist() == out1.tolist()
    assert torch.allclose(conv((x1, x2), adj.t()), out1, atol=1e-6)
    assert torch.allclose(conv((x1, None), adj.t()), out2, atol=1e-6)

    t = '(OptPairTensor, Tensor, OptTensor, Size, NoneType) -> Tensor'
    jit = torch.jit.script(conv.jittable(t))
    assert jit((x1, x2), edge_index).tolist() == out1.tolist()
    assert jit((x1, x2), edge_index, size=(4, 2)).tolist() == out1.tolist()
    assert jit((x1, None), edge_index, size=(4, 2)).tolist() == out2.tolist()

    t = '(OptPairTensor, SparseTensor, OptTensor, Size, NoneType) -> Tensor'
    jit = torch.jit.script(conv.jittable(t))
    assert torch.allclose(jit((x1, x2), adj.t()), out1, atol=1e-6)
    assert torch.allclose(jit((x1, None), adj.t()), out2, atol=1e-6)