def __init__(self, option, model_type, dataset, modules): BackboneBasedModel.__init__(self, option, model_type, dataset, modules) # Last MLP last_mlp_opt = option.mlp_cls self._dim_output = last_mlp_opt.nn[-1] self.FC_layer = Seq() for i in range(1, len(last_mlp_opt.nn)): self.FC_layer.append(Conv1D(last_mlp_opt.nn[i - 1], last_mlp_opt.nn[i], bn=True, bias=False)) self.loss_names = ["loss_patch_desc"]
def __init__(self, option, model_type, dataset, modules): BackboneBasedModel.__init__(self, option, model_type, dataset, modules) # Last MLP last_mlp_opt = option.mlp_cls self._dim_output = last_mlp_opt.nn[-1] self.FC_layer = pt_utils.Seq(last_mlp_opt.nn[0]) for i in range(1, len(last_mlp_opt.nn)): self.FC_layer.conv1d(last_mlp_opt.nn[i], bn=True) self.loss_names = ["loss_patch_desc"]
def __init__(self, option, model_type, dataset, modules): """ Initialize this model class Parameters: opt -- training/test options A few things can be done here. - (required) call the initialization function of BaseModel - define loss function, visualization images, model names, and optimizers """ BackboneBasedModel.__init__(self, option, model_type, dataset, modules) self.set_last_mlp(option.mlp_cls) self.loss_names = ["loss_reg"]
def __init__(self, option, model_type, dataset, modules): BackboneBasedModel.__init__(self, option, model_type, dataset, modules) self.set_last_mlp(option.mlp_cls) self.loss_names = ["loss_reg", "loss", "internal"]