コード例 #1
0
    def __init__(self, option, model_type, dataset, modules):
        BackboneBasedModel.__init__(self, option, model_type, dataset, modules)

        # Last MLP
        last_mlp_opt = option.mlp_cls
        self._dim_output = last_mlp_opt.nn[-1]

        self.FC_layer = Seq()
        for i in range(1, len(last_mlp_opt.nn)):
            self.FC_layer.append(Conv1D(last_mlp_opt.nn[i - 1], last_mlp_opt.nn[i], bn=True, bias=False))

        self.loss_names = ["loss_patch_desc"]
コード例 #2
0
    def __init__(self, option, model_type, dataset, modules):
        BackboneBasedModel.__init__(self, option, model_type, dataset, modules)

        # Last MLP
        last_mlp_opt = option.mlp_cls
        self._dim_output = last_mlp_opt.nn[-1]

        self.FC_layer = pt_utils.Seq(last_mlp_opt.nn[0])
        for i in range(1, len(last_mlp_opt.nn)):
            self.FC_layer.conv1d(last_mlp_opt.nn[i], bn=True)

        self.loss_names = ["loss_patch_desc"]
コード例 #3
0
    def __init__(self, option, model_type, dataset, modules):
        """
        Initialize this model class
        Parameters:
            opt -- training/test options
        A few things can be done here.
        - (required) call the initialization function of BaseModel
        - define loss function, visualization images, model names, and optimizers
        """

        BackboneBasedModel.__init__(self, option, model_type, dataset, modules)
        self.set_last_mlp(option.mlp_cls)
        self.loss_names = ["loss_reg"]
コード例 #4
0
ファイル: kpconv.py プロジェクト: ybyangjing/torch-points3d
    def __init__(self, option, model_type, dataset, modules):

        BackboneBasedModel.__init__(self, option, model_type, dataset, modules)
        self.set_last_mlp(option.mlp_cls)
        self.loss_names = ["loss_reg", "loss", "internal"]