コード例 #1
0
def furthest_point_sample(xyz, npoint):
    # type: (Any, torch.Tensor, int) -> torch.Tensor
    r"""
    Uses iterative furthest point sampling to select a set of npoint features that have the largest
    minimum distance

    Parameters
    ----------
    xyz : torch.Tensor
        (B, N, 3) tensor where N > npoint
    npoint : int32
        number of features in the sampled set

    Returns
    -------
    torch.Tensor
        (B, npoint) tensor containing the set
    """
    if npoint > xyz.shape[1]:
        raise ValueError(
            "caanot sample %i points from an input set of %i points" %
            (npoint, xyz.shape[1]))
    if xyz.is_cuda:
        return tpcuda.furthest_point_sampling(xyz, npoint)
    else:
        return tpcpu.fps(xyz, npoint, True)
コード例 #2
0
 def test_random(self):
     points = torch.randn(10, 100, 3)
     idx = fps(points, 2, True)
     self.assertNotEqual(idx[0][0], 0)
コード例 #3
0
 def test_simplecpu(self):
     points = torch.tensor([[[0, 0, 0], [1, 0, 0], [2, 0, 0]],
                            [[-1, 1, 0], [0, 0, 10], [0, 0, 2]]]).float()
     idx = fps(points, 2, False)
     torch.testing.assert_allclose(idx, torch.tensor([[0, 2], [0, 1]]))