def panentropy(self, adj_t: SparseTensor, dtype: Optional[int] = None) -> SparseTensor: tmp = SparseTensor.eye(adj_t.size(0), adj_t.size(1), has_value=True, dtype=dtype, device=adj_t.device()) tmp = tmp.mul_nnz(self.weight[0]) outs = [tmp] for i in range(1, self.filter_size + 1): tmp = tmp @ adj_t tmp = tmp.mul_nnz(self.weight[i]) outs += [tmp] row = torch.cat([out.storage.row() for out in outs], dim=0) col = torch.cat([out.storage.col() for out in outs], dim=0) value = torch.cat([out.storage.value() for out in outs], dim=0) out = SparseTensor(row=row, col=col, value=value, sparse_sizes=adj_t.sparse_sizes()).coalesce() return out
def forward(self, x, edge_index, edge_attr=None, batch=None): if batch is None: batch = edge_index.new_zeros(x.size(0)) num_node = x.size(0) k = F.relu(self.lin_2(x)) A = SparseTensor.from_edge_index(edge_index=edge_index, edge_attr=edge_attr, sparse_sizes=(num_node, num_node)) I = SparseTensor.eye(num_node, device=self.args.device) A_wave = fill_diag(A, 1) s = A_wave @ k score = s.squeeze() perm = topk(score, self.ratio, batch) A = self.norm(A) K_neighbor = A * k.T x_neighbor = K_neighbor @ x # ----modified deg = sum(A, dim=1) deg_inv = deg.pow_(-1) deg_inv.masked_fill_(deg_inv == float('inf'), 0.) x_neighbor = x_neighbor * deg_inv.view(1, -1).T # ---- x_self = x * k x = x_neighbor * ( 1 - self.args.combine_ratio) + x_self * self.args.combine_ratio x = x[perm] batch = batch[perm] edge_index, edge_attr = filter_adj(edge_index, edge_attr, perm, num_nodes=s.size(0)) return x, edge_index, edge_attr, batch, perm