コード例 #1
0
 def share_model_params(self, model: nn.Module) -> None:
     shared_parameters: Set[int] = set()
     for k, v in ModuleStateDict(model.state_dict()).items():
         if v._cdata not in shared_parameters:
             shared_parameters.add(v._cdata)
             log("Adding %s (%d params) to parameter server" %
                 (k, v.numel()))
             self.set_param(k, v.data)
コード例 #2
0
def load_model_state_dict(hf: h5py.File, ) -> Optional[ModuleStateDict]:
    if MODEL_STATE_DICT_GROUP not in hf:
        return None
    g = hf[MODEL_STATE_DICT_GROUP]
    state_dict = ModuleStateDict({})

    def process_dataset(public_name, dataset) -> None:
        if not isinstance(dataset, h5py.Dataset):
            return
        state_dict[public_name] = torch.from_numpy(dataset[...])

    g.visititems(process_dataset)
    return state_dict
コード例 #3
0
def model_state_dict_private_to_public(
    private_state_dict: ModuleStateDict, ) -> Dict[str, ModelParameter]:
    public_state_dict: Dict[str, ModelParameter] = {}
    for private_name, tensor in private_state_dict.items():
        if not isinstance(tensor, torch.Tensor):
            raise RuntimeError("Isn't the state dict supposed to be "
                               "a shallow key-to-tensor mapping?!")
        for mapping in MODEL_STATE_DICT_MAPPINGS:
            try:
                public_name = mapping.private_to_public.map(private_name)
            except ValueError:
                continue
            else:
                break
        else:
            raise RuntimeError(
                f"Couldn't find a match for state dict key: {private_name}")
        public_state_dict[public_name] = ModelParameter(private_name, tensor)
    return public_state_dict
コード例 #4
0
def save_model_state_dict(hf: h5py.File, state_dict: ModuleStateDict) -> None:
    g = hf.create_group(MODEL_STATE_DICT_GROUP, track_order=True)
    for private_key, tensor in state_dict.items():
        if not isinstance(tensor, torch.Tensor):
            raise RuntimeError("Isn't the state dict supposed to be "
                               "a shallow key-to-tensor mapping?!")
        for mapping in MODEL_STATE_DICT_MAPPINGS:
            try:
                public_key = mapping.private_to_public.map(private_key)
            except ValueError:
                continue
            else:
                break
        else:
            raise RuntimeError("Couldn't find a match for state dict key: %s" %
                               private_key)

        dataset = g.create_dataset(public_key, data=tensor.numpy())
        dataset.attrs[STATE_DICT_KEY_ATTR] = private_key
コード例 #5
0
def load_model_state_dict(hf: h5py.File) -> Optional[ModuleStateDict]:
    if MODEL_STATE_DICT_GROUP not in hf:
        return None
    g = hf[MODEL_STATE_DICT_GROUP]
    state_dict = ModuleStateDict({})

    def process_dataset(public_key, dataset) -> None:
        if not isinstance(dataset, h5py.Dataset):
            return
        for mapping in MODEL_STATE_DICT_MAPPINGS:
            try:
                private_key = mapping.public_to_private.map(public_key)
            except ValueError:
                continue
            else:
                break
        else:
            raise RuntimeError("Couldn't find a match for dataset name: %s" %
                               public_key)
        state_dict[private_key] = torch.from_numpy(dataset[...])

    g.visititems(process_dataset)
    return state_dict
コード例 #6
0
ファイル: train.py プロジェクト: shaojiaxue/PyTorch-BigGraph
def train_and_report_stats(
    config: ConfigSchema,
    model: Optional[MultiRelationEmbedder] = None,
    trainer: Optional[AbstractBatchProcessor] = None,
    evaluator: Optional[AbstractBatchProcessor] = None,
    rank: Rank = RANK_ZERO,
    subprocess_init: Optional[Callable[[], None]] = None,
) -> Generator[Tuple[int, Optional[Stats], Stats, Optional[Stats]], None,
               None]:
    """Each epoch/pass, for each partition pair, loads in embeddings and edgelist
    from disk, runs HOGWILD training on them, and writes partitions back to disk.
    """
    tag_logs_with_process_name(f"Trainer-{rank}")

    if config.verbose > 0:
        import pprint
        pprint.PrettyPrinter().pprint(config.to_dict())

    logger.info("Loading entity counts...")
    entity_storage = ENTITY_STORAGES.make_instance(config.entity_path)
    entity_counts: Dict[str, List[int]] = {}
    for entity, econf in config.entities.items():
        entity_counts[entity] = []
        for part in range(econf.num_partitions):
            entity_counts[entity].append(
                entity_storage.load_count(entity, part))

    # Figure out how many lhs and rhs partitions we need
    nparts_lhs, lhs_partitioned_types = get_partitioned_types(config, Side.LHS)
    nparts_rhs, rhs_partitioned_types = get_partitioned_types(config, Side.RHS)
    logger.debug(f"nparts {nparts_lhs} {nparts_rhs} "
                 f"types {lhs_partitioned_types} {rhs_partitioned_types}")
    total_buckets = nparts_lhs * nparts_rhs

    sync: AbstractSynchronizer
    bucket_scheduler: AbstractBucketScheduler
    parameter_sharer: Optional[ParameterSharer]
    partition_client: Optional[PartitionClient]
    if config.num_machines > 1:
        if not 0 <= rank < config.num_machines:
            raise RuntimeError("Invalid rank for trainer")
        if not td.is_available():
            raise RuntimeError("The installed PyTorch version doesn't provide "
                               "distributed training capabilities.")
        ranks = ProcessRanks.from_num_invocations(config.num_machines,
                                                  config.num_partition_servers)

        if rank == RANK_ZERO:
            logger.info("Setup lock server...")
            start_server(
                LockServer(
                    num_clients=len(ranks.trainers),
                    nparts_lhs=nparts_lhs,
                    nparts_rhs=nparts_rhs,
                    lock_lhs=len(lhs_partitioned_types) > 0,
                    lock_rhs=len(rhs_partitioned_types) > 0,
                    init_tree=config.distributed_tree_init_order,
                ),
                process_name="LockServer",
                init_method=config.distributed_init_method,
                world_size=ranks.world_size,
                server_rank=ranks.lock_server,
                groups=[ranks.trainers],
                subprocess_init=subprocess_init,
            )

        bucket_scheduler = DistributedBucketScheduler(
            server_rank=ranks.lock_server,
            client_rank=ranks.trainers[rank],
        )

        logger.info("Setup param server...")
        start_server(
            ParameterServer(num_clients=len(ranks.trainers)),
            process_name=f"ParamS-{rank}",
            init_method=config.distributed_init_method,
            world_size=ranks.world_size,
            server_rank=ranks.parameter_servers[rank],
            groups=[ranks.trainers],
            subprocess_init=subprocess_init,
        )

        parameter_sharer = ParameterSharer(
            process_name=f"ParamC-{rank}",
            client_rank=ranks.parameter_clients[rank],
            all_server_ranks=ranks.parameter_servers,
            init_method=config.distributed_init_method,
            world_size=ranks.world_size,
            groups=[ranks.trainers],
            subprocess_init=subprocess_init,
        )

        if config.num_partition_servers == -1:
            start_server(
                ParameterServer(num_clients=len(ranks.trainers),
                                log_stats=True),
                process_name=f"PartS-{rank}",
                init_method=config.distributed_init_method,
                world_size=ranks.world_size,
                server_rank=ranks.partition_servers[rank],
                groups=[ranks.trainers],
                subprocess_init=subprocess_init,
            )

        if len(ranks.partition_servers) > 0:
            partition_client = PartitionClient(ranks.partition_servers,
                                               log_stats=True)
        else:
            partition_client = None

        groups = init_process_group(
            rank=ranks.trainers[rank],
            world_size=ranks.world_size,
            init_method=config.distributed_init_method,
            groups=[ranks.trainers],
        )
        trainer_group, = groups
        sync = DistributedSynchronizer(trainer_group)

    else:
        sync = DummySynchronizer()
        bucket_scheduler = SingleMachineBucketScheduler(
            nparts_lhs, nparts_rhs, config.bucket_order)
        parameter_sharer = None
        partition_client = None
        hide_distributed_logging()

    # fork early for HOGWILD threads
    logger.info("Creating workers...")
    num_workers = get_num_workers(config.workers)
    pool = create_pool(
        num_workers,
        subprocess_name=f"TWorker-{rank}",
        subprocess_init=subprocess_init,
    )

    def make_optimizer(params: Iterable[torch.nn.Parameter],
                       is_emb: bool) -> Optimizer:
        params = list(params)
        if len(params) == 0:
            optimizer = DummyOptimizer()
        elif is_emb:
            optimizer = RowAdagrad(params, lr=config.lr)
        else:
            if config.relation_lr is not None:
                lr = config.relation_lr
            else:
                lr = config.lr
            optimizer = Adagrad(params, lr=lr)
        optimizer.share_memory()
        return optimizer

    # background_io is only supported in single-machine mode
    background_io = config.background_io and config.num_machines == 1

    checkpoint_manager = CheckpointManager(
        config.checkpoint_path,
        background=background_io,
        rank=rank,
        num_machines=config.num_machines,
        partition_client=partition_client,
        subprocess_name=f"BackgRW-{rank}",
        subprocess_init=subprocess_init,
    )
    checkpoint_manager.register_metadata_provider(
        ConfigMetadataProvider(config))
    checkpoint_manager.write_config(config)

    if config.num_edge_chunks is not None:
        num_edge_chunks = config.num_edge_chunks
    else:
        num_edge_chunks = get_num_edge_chunks(config.edge_paths, nparts_lhs,
                                              nparts_rhs,
                                              config.max_edges_per_chunk)
    iteration_manager = IterationManager(
        config.num_epochs,
        config.edge_paths,
        num_edge_chunks,
        iteration_idx=checkpoint_manager.checkpoint_version)
    checkpoint_manager.register_metadata_provider(iteration_manager)

    if config.init_path is not None:
        loadpath_manager = CheckpointManager(config.init_path)
    else:
        loadpath_manager = None

    def load_embeddings(
        entity: EntityName,
        part: Partition,
        strict: bool = False,
        force_dirty: bool = False,
    ) -> Tuple[torch.nn.Parameter, Optional[OptimizerStateDict]]:
        if strict:
            embs, optim_state = checkpoint_manager.read(
                entity, part, force_dirty=force_dirty)
        else:
            # Strict is only false during the first iteration, because in that
            # case the checkpoint may not contain any data (unless a previous
            # run was resumed) so we fall back on initial values.
            embs, optim_state = checkpoint_manager.maybe_read(
                entity, part, force_dirty=force_dirty)
            if embs is None and loadpath_manager is not None:
                embs, optim_state = loadpath_manager.maybe_read(entity, part)
            if embs is None:
                embs, optim_state = init_embs(entity,
                                              entity_counts[entity][part],
                                              config.dimension,
                                              config.init_scale)
        assert embs.is_shared()
        return torch.nn.Parameter(embs), optim_state

    logger.info("Initializing global model...")

    if model is None:
        model = make_model(config)
    model.share_memory()
    if trainer is None:
        trainer = Trainer(
            global_optimizer=make_optimizer(model.parameters(), False),
            loss_fn=config.loss_fn,
            margin=config.margin,
            relations=config.relations,
        )
    if evaluator is None:
        evaluator = TrainingRankingEvaluator(
            override_num_batch_negs=config.eval_num_batch_negs,
            override_num_uniform_negs=config.eval_num_uniform_negs,
        )
    eval_batch_size = round_up_to_nearest_multiple(config.batch_size,
                                                   config.eval_num_batch_negs)

    state_dict, optim_state = checkpoint_manager.maybe_read_model()

    if state_dict is None and loadpath_manager is not None:
        state_dict, optim_state = loadpath_manager.maybe_read_model()
    if state_dict is not None:
        model.load_state_dict(state_dict, strict=False)
    if optim_state is not None:
        trainer.global_optimizer.load_state_dict(optim_state)

    logger.debug("Loading unpartitioned entities...")
    for entity, econfig in config.entities.items():
        if econfig.num_partitions == 1:
            embs, optim_state = load_embeddings(entity, Partition(0))
            model.set_embeddings(entity, embs, Side.LHS)
            model.set_embeddings(entity, embs, Side.RHS)
            optimizer = make_optimizer([embs], True)
            if optim_state is not None:
                optimizer.load_state_dict(optim_state)
            trainer.entity_optimizers[(entity, Partition(0))] = optimizer

    # start communicating shared parameters with the parameter server
    if parameter_sharer is not None:
        parameter_sharer.share_model_params(model)

    strict = False

    def swap_partitioned_embeddings(
        old_b: Optional[Bucket],
        new_b: Optional[Bucket],
    ):
        # 0. given the old and new buckets, construct data structures to keep
        #    track of old and new embedding (entity, part) tuples

        io_bytes = 0
        logger.info(f"Swapping partitioned embeddings {old_b} {new_b}")

        types = ([(e, Side.LHS) for e in lhs_partitioned_types] +
                 [(e, Side.RHS) for e in rhs_partitioned_types])
        old_parts = {(e, old_b.get_partition(side)): side
                     for e, side in types if old_b is not None}
        new_parts = {(e, new_b.get_partition(side)): side
                     for e, side in types if new_b is not None}

        to_checkpoint = set(old_parts) - set(new_parts)
        preserved = set(old_parts) & set(new_parts)

        # 1. checkpoint embeddings that will not be used in the next pair
        #
        if old_b is not None:  # there are previous embeddings to checkpoint
            logger.info("Writing partitioned embeddings")
            for entity, part in to_checkpoint:
                side = old_parts[(entity, part)]
                side_name = side.pick("lhs", "rhs")
                logger.debug(f"Checkpointing ({entity} {part} {side_name})")
                embs = model.get_embeddings(entity, side)
                optim_key = (entity, part)
                optim_state = OptimizerStateDict(
                    trainer.entity_optimizers[optim_key].state_dict())
                io_bytes += embs.numel() * embs.element_size(
                )  # ignore optim state
                checkpoint_manager.write(entity, part, embs.detach(),
                                         optim_state)
                if optim_key in trainer.entity_optimizers:
                    del trainer.entity_optimizers[optim_key]
                # these variables are holding large objects; let them be freed
                del embs
                del optim_state

            bucket_scheduler.release_bucket(old_b)

        # 2. copy old embeddings that will be used in the next pair
        #    into a temporary dictionary
        #
        tmp_emb = {
            x: model.get_embeddings(x[0], old_parts[x])
            for x in preserved
        }

        for entity, _ in types:
            model.clear_embeddings(entity, Side.LHS)
            model.clear_embeddings(entity, Side.RHS)

        if new_b is None:  # there are no new embeddings to load
            return io_bytes

        bucket_logger = BucketLogger(logger, bucket=new_b)

        # 3. load new embeddings into the model/optimizer, either from disk
        #    or the temporary dictionary
        #
        bucket_logger.info("Loading entities")
        for entity, side in types:
            part = new_b.get_partition(side)
            part_key = (entity, part)
            if part_key in tmp_emb:
                bucket_logger.debug(
                    f"Loading ({entity}, {part}) from preserved")
                embs, optim_state = tmp_emb[part_key], None
            else:
                bucket_logger.debug(f"Loading ({entity}, {part})")

                force_dirty = bucket_scheduler.check_and_set_dirty(
                    entity, part)
                embs, optim_state = load_embeddings(entity,
                                                    part,
                                                    strict=strict,
                                                    force_dirty=force_dirty)
                io_bytes += embs.numel() * embs.element_size(
                )  # ignore optim state

            model.set_embeddings(entity, embs, side)
            tmp_emb[part_key] = embs

            optim_key = (entity, part)
            if optim_key not in trainer.entity_optimizers:
                bucket_logger.debug(f"Resetting optimizer {optim_key}")
                optimizer = make_optimizer([embs], True)
                if optim_state is not None:
                    bucket_logger.debug("Setting optim state")
                    optimizer.load_state_dict(optim_state)

                trainer.entity_optimizers[optim_key] = optimizer

        return io_bytes

    if rank == RANK_ZERO:
        for stats_dict in checkpoint_manager.maybe_read_stats():
            index: int = stats_dict["index"]
            stats: Stats = Stats.from_dict(stats_dict["stats"])
            eval_stats_before: Optional[Stats] = None
            if "eval_stats_before" in stats_dict:
                eval_stats_before = Stats.from_dict(
                    stats_dict["eval_stats_before"])
            eval_stats_after: Optional[Stats] = None
            if "eval_stats_after" in stats_dict:
                eval_stats_after = Stats.from_dict(
                    stats_dict["eval_stats_after"])
            yield (index, eval_stats_before, stats, eval_stats_after)

    # Start of the main training loop.
    for epoch_idx, edge_path_idx, edge_chunk_idx in iteration_manager:
        logger.info(
            f"Starting epoch {epoch_idx + 1} / {iteration_manager.num_epochs}, "
            f"edge path {edge_path_idx + 1} / {iteration_manager.num_edge_paths}, "
            f"edge chunk {edge_chunk_idx + 1} / {iteration_manager.num_edge_chunks}"
        )
        edge_storage = EDGE_STORAGES.make_instance(iteration_manager.edge_path)
        logger.info(f"Edge path: {iteration_manager.edge_path}")

        sync.barrier()
        dist_logger.info("Lock client new epoch...")
        bucket_scheduler.new_pass(
            is_first=iteration_manager.iteration_idx == 0)
        sync.barrier()

        remaining = total_buckets
        cur_b = None
        while remaining > 0:
            old_b = cur_b
            io_time = 0.
            io_bytes = 0
            cur_b, remaining = bucket_scheduler.acquire_bucket()
            logger.info(f"still in queue: {remaining}")
            if cur_b is None:
                if old_b is not None:
                    # if you couldn't get a new pair, release the lock
                    # to prevent a deadlock!
                    tic = time.time()
                    io_bytes += swap_partitioned_embeddings(old_b, None)
                    io_time += time.time() - tic
                time.sleep(1)  # don't hammer td
                continue

            bucket_logger = BucketLogger(logger, bucket=cur_b)

            tic = time.time()

            io_bytes += swap_partitioned_embeddings(old_b, cur_b)

            current_index = \
                (iteration_manager.iteration_idx + 1) * total_buckets - remaining

            next_b = bucket_scheduler.peek()
            if next_b is not None and background_io:
                # Ensure the previous bucket finished writing to disk.
                checkpoint_manager.wait_for_marker(current_index - 1)

                bucket_logger.debug("Prefetching")
                for entity in lhs_partitioned_types:
                    checkpoint_manager.prefetch(entity, next_b.lhs)
                for entity in rhs_partitioned_types:
                    checkpoint_manager.prefetch(entity, next_b.rhs)

                checkpoint_manager.record_marker(current_index)

            bucket_logger.debug("Loading edges")
            edges = edge_storage.load_chunk_of_edges(
                cur_b.lhs, cur_b.rhs, edge_chunk_idx,
                iteration_manager.num_edge_chunks)
            num_edges = len(edges)
            # this might be off in the case of tensorlist or extra edge fields
            io_bytes += edges.lhs.tensor.numel(
            ) * edges.lhs.tensor.element_size()
            io_bytes += edges.rhs.tensor.numel(
            ) * edges.rhs.tensor.element_size()
            io_bytes += edges.rel.numel() * edges.rel.element_size()

            bucket_logger.debug("Shuffling edges")
            # Fix a seed to get the same permutation every time; have it
            # depend on all and only what affects the set of edges.
            g = torch.Generator()
            g.manual_seed(
                hash((edge_path_idx, edge_chunk_idx, cur_b.lhs, cur_b.rhs)))

            num_eval_edges = int(num_edges * config.eval_fraction)
            if num_eval_edges > 0:
                edge_perm = torch.randperm(num_edges, generator=g)
                eval_edge_perm = edge_perm[-num_eval_edges:]
                num_edges -= num_eval_edges
                edge_perm = edge_perm[torch.randperm(num_edges)]
            else:
                edge_perm = torch.randperm(num_edges)

            # HOGWILD evaluation before training
            eval_stats_before: Optional[Stats] = None
            if num_eval_edges > 0:
                bucket_logger.debug(
                    "Waiting for workers to perform evaluation")
                future_all_eval_stats_before = pool.map_async(
                    call, [
                        partial(
                            process_in_batches,
                            batch_size=eval_batch_size,
                            model=model,
                            batch_processor=evaluator,
                            edges=edges,
                            indices=eval_edge_perm[s],
                        ) for s in split_almost_equally(eval_edge_perm.size(0),
                                                        num_parts=num_workers)
                    ])
                all_eval_stats_before = \
                    get_async_result(future_all_eval_stats_before, pool)
                eval_stats_before = Stats.sum(all_eval_stats_before).average()
                bucket_logger.info(
                    f"Stats before training: {eval_stats_before}")

            io_time += time.time() - tic
            tic = time.time()
            # HOGWILD training
            bucket_logger.debug("Waiting for workers to perform training")
            # FIXME should we only delay if iteration_idx == 0?
            future_all_stats = pool.map_async(call, [
                partial(
                    process_in_batches,
                    batch_size=config.batch_size,
                    model=model,
                    batch_processor=trainer,
                    edges=edges,
                    indices=edge_perm[s],
                    delay=config.hogwild_delay
                    if epoch_idx == 0 and rank > 0 else 0,
                ) for rank, s in enumerate(
                    split_almost_equally(edge_perm.size(0),
                                         num_parts=num_workers))
            ])
            all_stats = get_async_result(future_all_stats, pool)
            stats = Stats.sum(all_stats).average()
            compute_time = time.time() - tic

            bucket_logger.info(
                f"bucket {total_buckets - remaining} / {total_buckets} : "
                f"Processed {num_edges} edges in {compute_time:.2f} s "
                f"( {num_edges / compute_time / 1e6:.2g} M/sec ); "
                f"io: {io_time:.2f} s ( {io_bytes / io_time / 1e6:.2f} MB/sec )"
            )
            bucket_logger.info(f"{stats}")

            # HOGWILD eval after training
            eval_stats_after: Optional[Stats] = None
            if num_eval_edges > 0:
                bucket_logger.debug(
                    "Waiting for workers to perform evaluation")
                future_all_eval_stats_after = pool.map_async(
                    call, [
                        partial(
                            process_in_batches,
                            batch_size=eval_batch_size,
                            model=model,
                            batch_processor=evaluator,
                            edges=edges,
                            indices=eval_edge_perm[s],
                        ) for s in split_almost_equally(eval_edge_perm.size(0),
                                                        num_parts=num_workers)
                    ])
                all_eval_stats_after = \
                    get_async_result(future_all_eval_stats_after, pool)
                eval_stats_after = Stats.sum(all_eval_stats_after).average()
                bucket_logger.info(f"Stats after training: {eval_stats_after}")

            # Add train/eval metrics to queue
            stats_dict = {
                "index": current_index,
                "stats": stats.to_dict(),
            }
            if eval_stats_before is not None:
                stats_dict["eval_stats_before"] = eval_stats_before.to_dict()
            if eval_stats_after is not None:
                stats_dict["eval_stats_after"] = eval_stats_after.to_dict()
            checkpoint_manager.append_stats(stats_dict)
            yield current_index, eval_stats_before, stats, eval_stats_after

        swap_partitioned_embeddings(cur_b, None)

        # Distributed Processing: all machines can leave the barrier now.
        sync.barrier()

        # Preserving a checkpoint requires two steps:
        # - create a snapshot (w/ symlinks) after it's first written;
        # - don't delete it once the following one is written.
        # These two happen in two successive iterations of the main loop: the
        # one just before and the one just after the epoch boundary.
        preserve_old_checkpoint = should_preserve_old_checkpoint(
            iteration_manager, config.checkpoint_preservation_interval)
        preserve_new_checkpoint = should_preserve_old_checkpoint(
            iteration_manager + 1, config.checkpoint_preservation_interval)

        # Write metadata: for multiple machines, write from rank-0
        logger.info(
            f"Finished epoch {epoch_idx + 1} / {iteration_manager.num_epochs}, "
            f"edge path {edge_path_idx + 1} / {iteration_manager.num_edge_paths}, "
            f"edge chunk {edge_chunk_idx + 1} / {iteration_manager.num_edge_chunks}"
        )
        if rank == 0:
            for entity, econfig in config.entities.items():
                if econfig.num_partitions == 1:
                    embs = model.get_embeddings(entity, Side.LHS)
                    optimizer = trainer.entity_optimizers[(entity,
                                                           Partition(0))]

                    checkpoint_manager.write(
                        entity, Partition(0), embs.detach(),
                        OptimizerStateDict(optimizer.state_dict()))

            sanitized_state_dict: ModuleStateDict = {}
            for k, v in ModuleStateDict(model.state_dict()).items():
                if k.startswith('lhs_embs') or k.startswith('rhs_embs'):
                    # skipping state that's an entity embedding
                    continue
                sanitized_state_dict[k] = v

            logger.info("Writing the metadata")
            checkpoint_manager.write_model(
                sanitized_state_dict,
                OptimizerStateDict(trainer.global_optimizer.state_dict()),
            )

        logger.info("Writing the checkpoint")
        checkpoint_manager.write_new_version(config)

        dist_logger.info(
            "Waiting for other workers to write their parts of the checkpoint")
        sync.barrier()
        dist_logger.info("All parts of the checkpoint have been written")

        logger.info("Switching to the new checkpoint version")
        checkpoint_manager.switch_to_new_version()

        dist_logger.info(
            "Waiting for other workers to switch to the new checkpoint version"
        )
        sync.barrier()
        dist_logger.info(
            "All workers have switched to the new checkpoint version")

        # After all the machines have finished committing
        # checkpoints, we either remove the old checkpoints
        # or we preserve it
        if preserve_new_checkpoint:
            # Add 1 so the index is a multiple of the interval, it looks nicer.
            checkpoint_manager.preserve_current_version(config, epoch_idx + 1)
        if not preserve_old_checkpoint:
            checkpoint_manager.remove_old_version(config)

        # now we're sure that all partition files exist,
        # so be strict about loading them
        strict = True

    # quiescence
    pool.close()
    pool.join()

    sync.barrier()

    checkpoint_manager.close()
    if loadpath_manager is not None:
        loadpath_manager.close()

    # FIXME join distributed workers (not really necessary)

    logger.info("Exiting")
コード例 #7
0
ファイル: train.py プロジェクト: yueyedeai/PyTorch-BigGraph
def train_and_report_stats(
    config: ConfigSchema,
    model: Optional[MultiRelationEmbedder] = None,
    trainer: Optional[AbstractBatchProcessor] = None,
    evaluator: Optional[AbstractBatchProcessor] = None,
    rank: Rank = RANK_ZERO,
) -> Generator[Tuple[int, Optional[Stats], Stats, Optional[Stats]], None, None]:
    """Each epoch/pass, for each partition pair, loads in embeddings and edgelist
    from disk, runs HOGWILD training on them, and writes partitions back to disk.
    """

    if config.verbose > 0:
        import pprint
        pprint.PrettyPrinter().pprint(config.to_dict())

    log("Loading entity counts...")
    if maybe_old_entity_path(config.entity_path):
        log("WARNING: It may be that your entity path contains files using the "
            "old format. See D14241362 for how to update them.")
    entity_counts: Dict[str, List[int]] = {}
    for entity, econf in config.entities.items():
        entity_counts[entity] = []
        for part in range(econf.num_partitions):
            with open(os.path.join(
                config.entity_path, "entity_count_%s_%d.txt" % (entity, part)
            ), "rt") as tf:
                entity_counts[entity].append(int(tf.read().strip()))

    # Figure out how many lhs and rhs partitions we need
    nparts_lhs, lhs_partitioned_types = get_partitioned_types(config, Side.LHS)
    nparts_rhs, rhs_partitioned_types = get_partitioned_types(config, Side.RHS)
    vlog("nparts %d %d types %s %s" %
         (nparts_lhs, nparts_rhs, lhs_partitioned_types, rhs_partitioned_types))
    total_buckets = nparts_lhs * nparts_rhs

    sync: AbstractSynchronizer
    bucket_scheduler: AbstractBucketScheduler
    parameter_sharer: Optional[ParameterSharer]
    partition_client: Optional[PartitionClient]
    if config.num_machines > 1:
        if not 0 <= rank < config.num_machines:
            raise RuntimeError("Invalid rank for trainer")
        if not td.is_available():
            raise RuntimeError("The installed PyTorch version doesn't provide "
                               "distributed training capabilities.")
        ranks = ProcessRanks.from_num_invocations(
            config.num_machines, config.num_partition_servers)

        if rank == RANK_ZERO:
            log("Setup lock server...")
            start_server(
                LockServer(
                    num_clients=len(ranks.trainers),
                    nparts_lhs=nparts_lhs,
                    nparts_rhs=nparts_rhs,
                    lock_lhs=len(lhs_partitioned_types) > 0,
                    lock_rhs=len(rhs_partitioned_types) > 0,
                    init_tree=config.distributed_tree_init_order,
                ),
                server_rank=ranks.lock_server,
                world_size=ranks.world_size,
                init_method=config.distributed_init_method,
                groups=[ranks.trainers],
            )

        bucket_scheduler = DistributedBucketScheduler(
            server_rank=ranks.lock_server,
            client_rank=ranks.trainers[rank],
        )

        log("Setup param server...")
        start_server(
            ParameterServer(num_clients=len(ranks.trainers)),
            server_rank=ranks.parameter_servers[rank],
            init_method=config.distributed_init_method,
            world_size=ranks.world_size,
            groups=[ranks.trainers],
        )

        parameter_sharer = ParameterSharer(
            client_rank=ranks.parameter_clients[rank],
            all_server_ranks=ranks.parameter_servers,
            init_method=config.distributed_init_method,
            world_size=ranks.world_size,
            groups=[ranks.trainers],
        )

        if config.num_partition_servers == -1:
            start_server(
                ParameterServer(num_clients=len(ranks.trainers)),
                server_rank=ranks.partition_servers[rank],
                world_size=ranks.world_size,
                init_method=config.distributed_init_method,
                groups=[ranks.trainers],
            )

        if len(ranks.partition_servers) > 0:
            partition_client = PartitionClient(ranks.partition_servers)
        else:
            partition_client = None

        groups = init_process_group(
            rank=ranks.trainers[rank],
            world_size=ranks.world_size,
            init_method=config.distributed_init_method,
            groups=[ranks.trainers],
        )
        trainer_group, = groups
        sync = DistributedSynchronizer(trainer_group)
        dlog = log

    else:
        sync = DummySynchronizer()
        bucket_scheduler = SingleMachineBucketScheduler(
            nparts_lhs, nparts_rhs, config.bucket_order)
        parameter_sharer = None
        partition_client = None
        dlog = lambda msg: None

    # fork early for HOGWILD threads
    log("Creating workers...")
    num_workers = get_num_workers(config.workers)
    pool = create_pool(num_workers)

    def make_optimizer(params: Iterable[torch.nn.Parameter], is_emb: bool) -> Optimizer:
        params = list(params)
        if len(params) == 0:
            optimizer = DummyOptimizer()
        elif is_emb:
            optimizer = RowAdagrad(params, lr=config.lr)
        else:
            if config.relation_lr is not None:
                lr = config.relation_lr
            else:
                lr = config.lr
            optimizer = Adagrad(params, lr=lr)
        optimizer.share_memory()
        return optimizer

    # background_io is only supported in single-machine mode
    background_io = config.background_io and config.num_machines == 1

    checkpoint_manager = CheckpointManager(
        config.checkpoint_path,
        background=background_io,
        rank=rank,
        num_machines=config.num_machines,
        partition_client=partition_client,
    )
    checkpoint_manager.register_metadata_provider(ConfigMetadataProvider(config))
    checkpoint_manager.write_config(config)

    iteration_manager = IterationManager(
        config.num_epochs, config.edge_paths, config.num_edge_chunks,
        iteration_idx=checkpoint_manager.checkpoint_version)
    checkpoint_manager.register_metadata_provider(iteration_manager)

    if config.init_path is not None:
        loadpath_manager = CheckpointManager(config.init_path)
    else:
        loadpath_manager = None

    def load_embeddings(
        entity: EntityName,
        part: Partition,
        strict: bool = False,
        force_dirty: bool = False,
    ) -> Tuple[torch.nn.Parameter, Optional[OptimizerStateDict]]:
        if strict:
            embs, optim_state = checkpoint_manager.read(entity, part,
                                                        force_dirty=force_dirty)
        else:
            # Strict is only false during the first iteration, because in that
            # case the checkpoint may not contain any data (unless a previous
            # run was resumed) so we fall back on initial values.
            embs, optim_state = checkpoint_manager.maybe_read(entity, part,
                                                              force_dirty=force_dirty)
            if embs is None and loadpath_manager is not None:
                embs, optim_state = loadpath_manager.maybe_read(entity, part)
            if embs is None:
                embs, optim_state = init_embs(entity, entity_counts[entity][part],
                                              config.dimension, config.init_scale)
        assert embs.is_shared()
        return torch.nn.Parameter(embs), optim_state

    log("Initializing global model...")

    if model is None:
        model = make_model(config)
    model.share_memory()
    if trainer is None:
        trainer = Trainer(
            global_optimizer=make_optimizer(model.parameters(), False),
            loss_fn=config.loss_fn,
            margin=config.margin,
            relations=config.relations,
        )
    if evaluator is None:
        evaluator = TrainingRankingEvaluator(
            override_num_batch_negs=config.eval_num_batch_negs,
            override_num_uniform_negs=config.eval_num_uniform_negs,
        )
    eval_batch_size = round_up_to_nearest_multiple(config.batch_size, config.eval_num_batch_negs)

    state_dict, optim_state = checkpoint_manager.maybe_read_model()

    if state_dict is None and loadpath_manager is not None:
        state_dict, optim_state = loadpath_manager.maybe_read_model()
    if state_dict is not None:
        model.load_state_dict(state_dict, strict=False)
    if optim_state is not None:
        trainer.global_optimizer.load_state_dict(optim_state)

    vlog("Loading unpartitioned entities...")
    for entity, econfig in config.entities.items():
        if econfig.num_partitions == 1:
            embs, optim_state = load_embeddings(entity, Partition(0))
            model.set_embeddings(entity, embs, Side.LHS)
            model.set_embeddings(entity, embs, Side.RHS)
            optimizer = make_optimizer([embs], True)
            if optim_state is not None:
                optimizer.load_state_dict(optim_state)
            trainer.entity_optimizers[(entity, Partition(0))] = optimizer

    # start communicating shared parameters with the parameter server
    if parameter_sharer is not None:
        parameter_sharer.share_model_params(model)

    strict = False

    def swap_partitioned_embeddings(
        old_b: Optional[Bucket],
        new_b: Optional[Bucket],
    ):
        # 0. given the old and new buckets, construct data structures to keep
        #    track of old and new embedding (entity, part) tuples

        io_bytes = 0
        log("Swapping partitioned embeddings %s %s" % (old_b, new_b))

        types = ([(e, Side.LHS) for e in lhs_partitioned_types]
                 + [(e, Side.RHS) for e in rhs_partitioned_types])
        old_parts = {(e, old_b.get_partition(side)): side
                     for e, side in types if old_b is not None}
        new_parts = {(e, new_b.get_partition(side)): side
                     for e, side in types if new_b is not None}

        to_checkpoint = set(old_parts) - set(new_parts)
        preserved = set(old_parts) & set(new_parts)

        # 1. checkpoint embeddings that will not be used in the next pair
        #
        if old_b is not None:  # there are previous embeddings to checkpoint
            log("Writing partitioned embeddings")
            for entity, part in to_checkpoint:
                side = old_parts[(entity, part)]
                vlog("Checkpointing (%s %d %s)" %
                     (entity, part, side.pick("lhs", "rhs")))
                embs = model.get_embeddings(entity, side)
                optim_key = (entity, part)
                optim_state = OptimizerStateDict(trainer.entity_optimizers[optim_key].state_dict())
                io_bytes += embs.numel() * embs.element_size()  # ignore optim state
                checkpoint_manager.write(entity, part, embs.detach(), optim_state)
                if optim_key in trainer.entity_optimizers:
                    del trainer.entity_optimizers[optim_key]
                # these variables are holding large objects; let them be freed
                del embs
                del optim_state

            bucket_scheduler.release_bucket(old_b)

        # 2. copy old embeddings that will be used in the next pair
        #    into a temporary dictionary
        #
        tmp_emb = {x: model.get_embeddings(x[0], old_parts[x]) for x in preserved}

        for entity, _ in types:
            model.clear_embeddings(entity, Side.LHS)
            model.clear_embeddings(entity, Side.RHS)

        if new_b is None:  # there are no new embeddings to load
            return io_bytes

        # 3. load new embeddings into the model/optimizer, either from disk
        #    or the temporary dictionary
        #
        log("Loading entities")
        for entity, side in types:
            part = new_b.get_partition(side)
            part_key = (entity, part)
            if part_key in tmp_emb:
                vlog("Loading (%s, %d) from preserved" % (entity, part))
                embs, optim_state = tmp_emb[part_key], None
            else:
                vlog("Loading (%s, %d)" % (entity, part))

                force_dirty = bucket_scheduler.check_and_set_dirty(entity, part)
                embs, optim_state = load_embeddings(
                    entity, part, strict=strict, force_dirty=force_dirty)
                io_bytes += embs.numel() * embs.element_size()  # ignore optim state

            model.set_embeddings(entity, embs, side)
            tmp_emb[part_key] = embs

            optim_key = (entity, part)
            if optim_key not in trainer.entity_optimizers:
                vlog("Resetting optimizer %s" % (optim_key,))
                optimizer = make_optimizer([embs], True)
                if optim_state is not None:
                    vlog("Setting optim state")
                    optimizer.load_state_dict(optim_state)

                trainer.entity_optimizers[optim_key] = optimizer

        return io_bytes

    # Start of the main training loop.
    for epoch_idx, edge_path_idx, edge_chunk_idx \
            in iteration_manager.remaining_iterations():
        log("Starting epoch %d / %d edge path %d / %d edge chunk %d / %d" %
            (epoch_idx + 1, iteration_manager.num_epochs,
             edge_path_idx + 1, iteration_manager.num_edge_paths,
             edge_chunk_idx + 1, iteration_manager.num_edge_chunks))
        edge_reader = EdgeReader(iteration_manager.edge_path)
        log("edge_path= %s" % iteration_manager.edge_path)

        sync.barrier()
        dlog("Lock client new epoch...")
        bucket_scheduler.new_pass(is_first=iteration_manager.iteration_idx == 0)
        sync.barrier()

        remaining = total_buckets
        cur_b = None
        while remaining > 0:
            old_b = cur_b
            io_time = 0.
            io_bytes = 0
            cur_b, remaining = bucket_scheduler.acquire_bucket()
            print('still in queue: %d' % remaining, file=sys.stderr)
            if cur_b is None:
                if old_b is not None:
                    # if you couldn't get a new pair, release the lock
                    # to prevent a deadlock!
                    tic = time.time()
                    io_bytes += swap_partitioned_embeddings(old_b, None)
                    io_time += time.time() - tic
                time.sleep(1)  # don't hammer td
                continue

            def log_status(msg, always=False):
                f = log if always else vlog
                f("%s: %s" % (cur_b, msg))

            tic = time.time()

            io_bytes += swap_partitioned_embeddings(old_b, cur_b)

            current_index = \
                (iteration_manager.iteration_idx + 1) * total_buckets - remaining

            next_b = bucket_scheduler.peek()
            if next_b is not None and background_io:
                # Ensure the previous bucket finished writing to disk.
                checkpoint_manager.wait_for_marker(current_index - 1)

                log_status("Prefetching")
                for entity in lhs_partitioned_types:
                    checkpoint_manager.prefetch(entity, next_b.lhs)
                for entity in rhs_partitioned_types:
                    checkpoint_manager.prefetch(entity, next_b.rhs)

                checkpoint_manager.record_marker(current_index)

            log_status("Loading edges")
            edges = edge_reader.read(
                cur_b.lhs, cur_b.rhs, edge_chunk_idx, config.num_edge_chunks)
            num_edges = len(edges)
            # this might be off in the case of tensorlist or extra edge fields
            io_bytes += edges.lhs.tensor.numel() * edges.lhs.tensor.element_size()
            io_bytes += edges.rhs.tensor.numel() * edges.rhs.tensor.element_size()
            io_bytes += edges.rel.numel() * edges.rel.element_size()

            log_status("Shuffling edges")
            # Fix a seed to get the same permutation every time; have it
            # depend on all and only what affects the set of edges.
            g = torch.Generator()
            g.manual_seed(hash((edge_path_idx, edge_chunk_idx, cur_b.lhs, cur_b.rhs)))

            num_eval_edges = int(num_edges * config.eval_fraction)
            if num_eval_edges > 0:
                edge_perm = torch.randperm(num_edges, generator=g)
                eval_edge_perm = edge_perm[-num_eval_edges:]
                num_edges -= num_eval_edges
                edge_perm = edge_perm[torch.randperm(num_edges)]
            else:
                edge_perm = torch.randperm(num_edges)

            # HOGWILD evaluation before training
            eval_stats_before: Optional[Stats] = None
            if num_eval_edges > 0:
                log_status("Waiting for workers to perform evaluation")
                all_eval_stats_before = pool.map(call, [
                    partial(
                        process_in_batches,
                        batch_size=eval_batch_size,
                        model=model,
                        batch_processor=evaluator,
                        edges=edges,
                        indices=eval_edge_perm[s],
                    )
                    for s in split_almost_equally(eval_edge_perm.size(0),
                                                  num_parts=num_workers)
                ])
                eval_stats_before = Stats.sum(all_eval_stats_before).average()
                log("stats before %s: %s" % (cur_b, eval_stats_before))

            io_time += time.time() - tic
            tic = time.time()
            # HOGWILD training
            log_status("Waiting for workers to perform training")
            # FIXME should we only delay if iteration_idx == 0?
            all_stats = pool.map(call, [
                partial(
                    process_in_batches,
                    batch_size=config.batch_size,
                    model=model,
                    batch_processor=trainer,
                    edges=edges,
                    indices=edge_perm[s],
                    delay=config.hogwild_delay if epoch_idx == 0 and rank > 0 else 0,
                )
                for rank, s in enumerate(split_almost_equally(edge_perm.size(0),
                                                              num_parts=num_workers))
            ])
            stats = Stats.sum(all_stats).average()
            compute_time = time.time() - tic

            log_status(
                "bucket %d / %d : Processed %d edges in %.2f s "
                "( %.2g M/sec ); io: %.2f s ( %.2f MB/sec )" %
                (total_buckets - remaining, total_buckets,
                 num_edges, compute_time, num_edges / compute_time / 1e6,
                 io_time, io_bytes / io_time / 1e6),
                always=True)
            log_status("%s" % stats, always=True)

            # HOGWILD eval after training
            eval_stats_after: Optional[Stats] = None
            if num_eval_edges > 0:
                log_status("Waiting for workers to perform evaluation")
                all_eval_stats_after = pool.map(call, [
                    partial(
                        process_in_batches,
                        batch_size=eval_batch_size,
                        model=model,
                        batch_processor=evaluator,
                        edges=edges,
                        indices=eval_edge_perm[s],
                    )
                    for s in split_almost_equally(eval_edge_perm.size(0),
                                                  num_parts=num_workers)
                ])
                eval_stats_after = Stats.sum(all_eval_stats_after).average()
                log("stats after %s: %s" % (cur_b, eval_stats_after))

            # Add train/eval metrics to queue
            yield current_index, eval_stats_before, stats, eval_stats_after

        swap_partitioned_embeddings(cur_b, None)

        # Distributed Processing: all machines can leave the barrier now.
        sync.barrier()

        # Write metadata: for multiple machines, write from rank-0
        log("Finished epoch %d path %d pass %d; checkpointing global state."
            % (epoch_idx + 1, edge_path_idx + 1, edge_chunk_idx + 1))
        log("My rank: %d" % rank)
        if rank == 0:
            for entity, econfig in config.entities.items():
                if econfig.num_partitions == 1:
                    embs = model.get_embeddings(entity, Side.LHS)
                    optimizer = trainer.entity_optimizers[(entity, Partition(0))]

                    checkpoint_manager.write(
                        entity, Partition(0),
                        embs.detach(), OptimizerStateDict(optimizer.state_dict()))

            sanitized_state_dict: ModuleStateDict = {}
            for k, v in ModuleStateDict(model.state_dict()).items():
                if k.startswith('lhs_embs') or k.startswith('rhs_embs'):
                    # skipping state that's an entity embedding
                    continue
                sanitized_state_dict[k] = v

            log("Writing metadata...")
            checkpoint_manager.write_model(
                sanitized_state_dict,
                OptimizerStateDict(trainer.global_optimizer.state_dict()),
            )

        log("Writing the checkpoint...")
        checkpoint_manager.write_new_version(config)

        dlog("Waiting for other workers to write their parts of the checkpoint: rank %d" % rank)
        sync.barrier()
        dlog("All parts of the checkpoint have been written")

        log("Switching to new checkpoint version...")
        checkpoint_manager.switch_to_new_version()

        dlog("Waiting for other workers to switch to the new checkpoint version: rank %d" % rank)
        sync.barrier()
        dlog("All workers have switched to the new checkpoint version")

        # After all the machines have finished committing
        # checkpoints, we remove the old checkpoints.
        checkpoint_manager.remove_old_version(config)

        # now we're sure that all partition files exist,
        # so be strict about loading them
        strict = True

    # quiescence
    pool.close()
    pool.join()

    sync.barrier()

    checkpoint_manager.close()
    if loadpath_manager is not None:
        loadpath_manager.close()

    # FIXME join distributed workers (not really necessary)

    log("Exiting")
コード例 #8
0
    def _maybe_write_checkpoint(
        self,
        epoch_idx: int,
        edge_path_idx: int,
        edge_chunk_idx: int,
    ) -> None:
        config = self.config

        # Preserving a checkpoint requires two steps:
        # - create a snapshot (w/ symlinks) after it's first written;
        # - don't delete it once the following one is written.
        # These two happen in two successive iterations of the main loop: the
        # one just before and the one just after the epoch boundary.
        preserve_old_checkpoint = should_preserve_old_checkpoint(
            self.iteration_manager, config.checkpoint_preservation_interval)
        preserve_new_checkpoint = should_preserve_old_checkpoint(
            self.iteration_manager + 1,
            config.checkpoint_preservation_interval)

        # Write metadata: for multiple machines, write from rank-0
        logger.info(
            f"Finished epoch {epoch_idx + 1} / {self.iteration_manager.num_epochs}, "
            f"edge path {edge_path_idx + 1} / {self.iteration_manager.num_edge_paths}, "
            f"edge chunk {edge_chunk_idx + 1} / {self.iteration_manager.num_edge_chunks}"
        )
        if self.rank == 0:
            for entity, econfig in config.entities.items():
                if econfig.num_partitions == 1:
                    embs = self.holder.unpartitioned_embeddings[entity]
                    optimizer = self.trainer.unpartitioned_optimizers[entity]
                    self.checkpoint_manager.write(
                        entity, Partition(0), embs.detach(),
                        OptimizerStateDict(optimizer.state_dict()))

            logger.info("Writing the metadata")
            state_dict: ModuleStateDict = ModuleStateDict(
                self.model.state_dict())
            self.checkpoint_manager.write_model(
                state_dict,
                OptimizerStateDict(self.trainer.model_optimizer.state_dict()))

            logger.info("Writing the training stats")
            all_stats_dicts: List[Dict[...]] = []
            for stats in self.bucket_scheduler.get_stats_for_pass():
                stats_dict = {
                    "epoch_idx": epoch_idx,
                    "edge_path_idx": edge_path_idx,
                    "edge_chunk_idx": edge_chunk_idx,
                    "lhs_partition": stats.lhs_partition,
                    "rhs_partition": stats.rhs_partition,
                    "index": stats.index,
                    "stats": stats.train.to_dict(),
                }
                if stats.eval_before is not None:
                    stats_dict[
                        "eval_stats_before"] = stats.eval_before.to_dict()
                if stats.eval_after is not None:
                    stats_dict["eval_stats_after"] = stats.eval_after.to_dict()
                all_stats_dicts.append(stats_dict)
            self.checkpoint_manager.append_stats(all_stats_dicts)

        logger.info("Writing the checkpoint")
        self.checkpoint_manager.write_new_version(
            config, self.entity_counts, self.embedding_storage_freelist)

        dist_logger.info(
            "Waiting for other workers to write their parts of the checkpoint")
        self._barrier()
        dist_logger.info("All parts of the checkpoint have been written")

        logger.info("Switching to the new checkpoint version")
        self.checkpoint_manager.switch_to_new_version()

        dist_logger.info(
            "Waiting for other workers to switch to the new checkpoint version"
        )
        self._barrier()
        dist_logger.info(
            "All workers have switched to the new checkpoint version")

        # After all the machines have finished committing
        # checkpoints, we either remove the old checkpoints
        # or we preserve it
        if preserve_new_checkpoint:
            # Add 1 so the index is a multiple of the interval, it looks nicer.
            self.checkpoint_manager.preserve_current_version(
                config, epoch_idx + 1)
        if not preserve_old_checkpoint:
            self.checkpoint_manager.remove_old_version(config)