コード例 #1
0
ファイル: eval.py プロジェクト: duys3416/torchcv
def eval(net, dataset):
    for i, (inputs, box_targets, label_targets) in enumerate(dataloader):
        print('%d/%d' % (i, len(dataloader)))
        gt_boxes.append(box_targets.squeeze(0))
        gt_labels.append(label_targets.squeeze(0))

        loc_preds, cls_preds = net(Variable(inputs.cuda(), volatile=True))
        box_preds, label_preds, score_preds = box_coder.decode(
            loc_preds.cuda().data.squeeze(),
            F.softmax(cls_preds.squeeze(), dim=1).cuda().data,
            score_thresh=0.01)

        pred_boxes.append(box_preds)
        pred_labels.append(label_preds)
        pred_scores.append(score_preds)

    print(
        voc_eval(pred_boxes,
                 pred_labels,
                 pred_scores,
                 gt_boxes,
                 gt_labels,
                 gt_difficults,
                 iou_thresh=0.5,
                 use_07_metric=True))
コード例 #2
0
def eval(net):

    net.eval()

    def transform(img, boxes, labels):
        img, boxes = resize(img, boxes, size=(img_size, img_size))
        img = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
        ])(img)
        return img, boxes, labels

    dataset = ListDataset(root=args.data_root, \
                        list_file=args.voc07_test,
                        transform=transform)
    dataloader = torch.utils.data.DataLoader(dataset,
                                             batch_size=1,
                                             shuffle=False,
                                             num_workers=8)
    box_coder = SSDBoxCoder(net)

    pred_boxes = []
    pred_labels = []
    pred_scores = []
    gt_boxes = []
    gt_labels = []

    with open('torchcv/datasets/voc/voc07_test_difficult.txt') as f:
        gt_difficults = []
        for line in f.readlines():
            line = line.strip().split()
            d = np.array([int(x) for x in line[1:]])
            gt_difficults.append(d)

    for i, (inputs, box_targets, label_targets) in enumerate(dataloader):
        print('%d/%d' % (i, len(dataloader)))
        gt_boxes.append(box_targets.squeeze(0))
        gt_labels.append(label_targets.squeeze(0))

        loc_preds, cls_preds = net(Variable(inputs.cuda(), volatile=True))
        box_preds, label_preds, score_preds = box_coder.decode(
            loc_preds.cpu().data.squeeze(),
            F.softmax(cls_preds.squeeze(), dim=1).cpu().data,
            score_thresh=0.01)

        pred_boxes.append(box_preds)
        pred_labels.append(label_preds)
        pred_scores.append(score_preds)

    aps = (voc_eval(pred_boxes,
                    pred_labels,
                    pred_scores,
                    gt_boxes,
                    gt_labels,
                    gt_difficults,
                    iou_thresh=0.5,
                    use_07_metric=True))
    net.train()
    return aps
コード例 #3
0
ファイル: train.py プロジェクト: yu119176/DSOD-Pytorch
def eval(net, test_num=10000):
    net.eval()

    def transform(img, boxes, labels):
        img, boxes = resize(img, boxes, size=(opt.img_size, opt.img_size))
        img = transforms.Compose([transforms.ToTensor(), caffe_normalize])(img)
        return img, boxes, labels

    dataset = ListDataset(root=opt.eval_img_root,
                          list_file=opt.eval_img_list,
                          transform=transform)
    box_coder = SSDBoxCoder(net.module)

    pred_boxes = []
    pred_labels = []
    pred_scores = []
    gt_boxes = []
    gt_labels = []

    #    with open('torchcv/datasets/voc/voc07_test_difficult.txt') as f:
    #        gt_difficults = []
    #        for line in f.readlines():
    #            line = line.strip().split()
    #            d = np.array([int(x) for x in line[1:]])
    #            gt_difficults.append(d)

    nums_img = dataset.__len__()
    for i in tqdm(range(nums_img)):
        inputs, box_targets, label_targets = dataset.__getitem__(i)
        gt_boxes.append(box_targets)
        gt_labels.append(label_targets)

        inputs = inputs.unsqueeze(0)
        with torch.no_grad():
            loc_preds, cls_preds = net(Variable(inputs.cuda()))
        box_preds, label_preds, score_preds = box_coder.decode(
            loc_preds.cpu().data.squeeze(),
            F.softmax(cls_preds.squeeze(), dim=1).cpu().data,
            score_thresh=0.1)

        pred_boxes.append(box_preds)
        pred_labels.append(label_preds)
        pred_scores.append(score_preds)

    aps = (voc_eval(pred_boxes,
                    pred_labels,
                    pred_scores,
                    gt_boxes,
                    gt_labels,
                    gt_difficults=None,
                    iou_thresh=0.5,
                    use_07_metric=False))
    net.train()
    return aps
コード例 #4
0
ファイル: evaluate.py プロジェクト: sumit33k/void-detector
def evaluate(net, img_dir, list_file, img_size, test_code):
    net.cuda()
    net.eval()

    def transform(img, boxes, labels):
        img, boxes = resize(img, boxes, size=(img_size, img_size))
        img = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
        ])(img)
        return img, boxes, labels

    print('Loading dataset..')
    dataset = ListDataset(root=img_dir, list_file=list_file,
                          transform=transform)
    if test_code:
        dataset.num_imgs = 1
    dl = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=False,
                                     num_workers=2)

    box_coder = SSDBoxCoder(net)
    pred_boxes = []
    pred_labels = []
    pred_scores = []
    gt_boxes = []
    gt_labels = []
    tqdm_dl = tqdm(dl, desc="Evaluate", ncols=0)
    for i, (inputs, box_targets, label_targets) in enumerate(tqdm_dl):
        gt_boxes.append(box_targets.squeeze(0))
        gt_labels.append(label_targets.squeeze(0))

        loc_preds, cls_preds = net(Variable(inputs.cuda(), volatile=True))
        box_preds, label_preds, score_preds = box_coder.decode(
            loc_preds.cpu().data.squeeze(),
            F.softmax(cls_preds.squeeze(), dim=1).cpu().data,
            score_thresh=0.01)

        pred_boxes.append(box_preds)
        pred_labels.append(label_preds)
        pred_scores.append(score_preds)

    ap_map_dict = voc_eval(pred_boxes, pred_labels, pred_scores, gt_boxes,
                           gt_labels, iou_thresh=0.5, use_07_metric=False)
    return ap_map_dict
コード例 #5
0
nums_img = dataset.__len__()
for i in tqdm(range(nums_img)):
    inputs, box_targets, label_targets = dataset.__getitem__(i)
    gt_boxes.append(box_targets)
    gt_labels.append(label_targets)

    inputs = inputs.unsqueeze(0)
    with torch.no_grad():
        loc_preds, cls_preds = net(Variable(inputs.cuda()))
    box_preds, label_preds, score_preds = box_coder.decode(
        loc_preds.cpu().data.squeeze(),
        F.softmax(cls_preds.squeeze(), dim=1).cpu().data,
        score_thresh=0.1)

    pred_boxes.append(box_preds)
    pred_labels.append(label_preds)
    pred_scores.append(score_preds)

print('Caculating AP..')
aps = voc_eval(pred_boxes,
               pred_labels,
               pred_scores,
               gt_boxes,
               gt_labels,
               gt_difficults=None,
               iou_thresh=0.5,
               use_07_metric=False)

print('ap = ', aps['ap'])
print('map = ', aps['map'])