コード例 #1
0
def main():
    import sys, os
    sys.path.insert(0, os.path.join(os.path.dirname(__file__), '../'))
    from torchocr.models import build_model
    from torchocr.utils.config_util import Config
    from torchocr.utils.checkpoints import load_checkpoint, save_checkpoint

    cfg_path = 'config/det/dbnet/61_hw_repb2_dbnet.py'
    model_path = 'work_dirs/61_hw_repb2_dbnet/det.pth'

    cfg = Config.fromfile(cfg_path)
    cfg.model.pretrained = None

    device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
    # build model
    train_model = build_model(cfg.model)
    load_checkpoint(train_model, model_path, map_location=device)
    train_model = train_model.to(device)

    cfg.model.backbone.is_deploy = True
    deploy_model = build_model(cfg.model)
    deploy_model = deploy_model.to(device)

    deploy_weights = whole_model_convert(train_model, deploy_model)
    save_checkpoint(deploy_weights, filepath='db_repvgg.pth')
コード例 #2
0
    def __init__(self, cfg, args):
        self.postprocess = build_postprocess(cfg.postprocess)
        self.mode = args.mode
        if self.mode == 'torch':
            model_path = args.model_path
            # for rec cal head number
            if hasattr(self.postprocess, 'character'):
                char_num = len(getattr(self.postprocess, 'character'))
                cfg.model.head.n_class = char_num
            self.model = build_model(cfg.model)
            self.device = torch.device(
                'cuda:0' if torch.cuda.is_available() else 'cpu')
            load_checkpoint(self.model, model_path, map_location=self.device)
            self.model.to(self.device)
            self.model.eval()
        elif self.mode == 'onnx':
            onnx_path = args.onnx_path
            self.model = ONNXModel(onnx_path)
        elif self.mode == 'engine':
            engine_path = args.engine_path
            self.model = TRTModel(engine_path)

        # pre-heat
        self.resize = RecResizeImg(image_shape=[3, 32, 800],
                                   infer_mode=False,
                                   character_type='ch')
コード例 #3
0
def main():
    args = parse_args()
    cfg_path = args.config
    cfg = Config.fromfile(cfg_path)

    # 通用配置
    global_config = cfg.options

    # build model
    model = build_model(cfg.model)
    device, gpu_ids = select_device(global_config.gpu_ids)
    load_checkpoint(model, args.model_path,map_location=device)
    model = model.to(device)

    model.device = device

    eval_dataset = build_dataset(cfg.test_data.dataset)
    eval_loader = build_dataloader(eval_dataset, loader_cfg=cfg.test_data.loader)
    # build postprocess
    postprocess = build_postprocess(cfg.postprocess)
    # build metric
    metric = build_metrics(cfg.metric)

    result_metirc = eval(model, eval_loader, postprocess, metric)
    print(result_metirc)
コード例 #4
0
    def __init__(self, cfg, model_path):
        self.model = build_model(cfg.model)
        load_checkpoint(self.model, model_path)
        self.device = torch.device(
            'cuda:0' if torch.cuda.is_available() else 'cpu')
        self.model.to(self.device)
        self.model.eval()
        self.postprocess = build_postprocess(cfg.postprocess)

        self.resize = RecResizeImg(image_shape=[3, 32, 100],
                                   infer_mode=False,
                                   character_type='ch')
コード例 #5
0
ファイル: det_inference.py プロジェクト: wangjianye/OpenOCR
    def __init__(self, cfg, model_path):

        self.model = build_model(cfg.model)
        load_checkpoint(self.model, model_path)
        self.device = torch.device(
            'cuda:0' if torch.cuda.is_available() else 'cpu')
        self.model.to(self.device)
        self.model.eval()
        self.postprocess = build_postprocess(cfg.postprocess)
        self.normalize = NormalizeImage(mean=[0.485, 0.456, 0.406],
                                        std=[0.229, 0.224, 0.225])
        self.to_chw = ToCHWImage()
        self.resize = DetResizeForTest([736, 1280])
コード例 #6
0
ファイル: test.py プロジェクト: hua1024/OpenOCR
def main():
    args = parse_args()
    cfg_path = args.config
    cfg = Config.fromfile(cfg_path)

    # set pretrained model None
    cfg.model.pretrained = None

    # build postprocess
    postprocess = build_postprocess(cfg.postprocess)
    # for rec cal head number
    if hasattr(postprocess, 'character'):
        char_num = len(getattr(postprocess, 'character'))
        cfg.model.head.n_class = char_num

    eval_dataset = build_dataset(cfg.test_data.dataset)
    eval_loader = build_dataloader(eval_dataset,
                                   loader_cfg=cfg.test_data.loader)
    # build metric
    metric = build_metrics(cfg.metric)

    mode = args.mode
    if mode == 'torch':
        # build model
        model = build_model(cfg.model)
        device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
        load_checkpoint(model, args.model_path, map_location=device)
        if args.simple:
            (filepath, filename) = os.path.split(args.model_path)
            simple_model_path = os.path.join(filepath,
                                             'sim_{}'.format(filename))
            save_checkpoint(model, simple_model_path)

        model = model.to(device)
        model.device = device
        result_metirc = eval(model, eval_loader, postprocess, metric)

    elif mode == 'engine':

        engine_path = args.engine_path
        model = TRTModel(engine_path)
        result_metirc = engine_eval(model, eval_loader, postprocess, metric)

    print(result_metirc)
コード例 #7
0
    def __init__(self, cfg, args):

        self.mode = args.mode
        self.postprocess = build_postprocess(cfg.postprocess)
        if self.mode == 'torch':
            model_path = args.model_path
            self.model = build_model(cfg.model)
            self.device = torch.device(
                'cuda:0' if torch.cuda.is_available() else 'cpu')
            load_checkpoint(self.model, model_path, map_location=self.device)
            self.model.to(self.device)
            self.model.eval()
        elif self.mode == 'onnx':
            onnx_path = args.onnx_path
            self.model = ONNXModel(onnx_path)
        elif self.mode == 'engine':
            engine_path = args.engine_path
            self.model = TRTModel(engine_path)

        self.normalize = NormalizeImage(mean=[0.485, 0.456, 0.406],
                                        std=[0.229, 0.224, 0.225])
        self.to_chw = ToCHWImage()
        self.resize = DetResizeForTest(short_size=736, mode='db')
コード例 #8
0
def main():
    args = parse_args()
    cfg_path = args.config
    cfg = Config.fromfile(cfg_path)

    global_config = cfg.options  # 通用配置
    # local_rank = 0 is logger
    global_config['local_rank'] = args.local_rank
    # amp train
    if args.amp:
        global_config['is_amp'] = True
    else:
        global_config['is_amp'] = False

    # ema train
    if args.ema:
        global_config['is_ema'] = True
    else:
        global_config['is_ema'] = False

    # set cudnn_benchmark,如数据size一致能加快训练
    if global_config.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True

    if global_config.get('work_dir', None) is None:
        # use config filename as default work_dir if cfg.work_dir is None
        global_config.work_dir = osp.join(
            './work_dirs',
            osp.splitext(osp.basename(args.config))[0])

    # create work_dir
    file_util.mkdir_or_exist(global_config.work_dir)
    # init the logger before other steps
    timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
    log_file = osp.join(global_config.work_dir, '{}.log'.format(timestamp))
    logger = get_logger(name='ocr', log_file=log_file)

    # # log env info
    if args.local_rank == 0:
        env_info_dict = collect_env()
        env_info = '\n'.join([('{}: {}'.format(k, v))
                              for k, v in env_info_dict.items()])
        dash_line = '-' * 60 + '\n'
        logger.info('Environment info:\n' + dash_line + env_info + '\n' +
                    dash_line)
        ## log some basic info
        logger.info('Config:\n{}'.format(cfg.text))
        # set random seeds
        logger.info('Set random seed to {}, deterministic: {}'.format(
            global_config.seed, args.deterministic))

    # set random seed
    set_random_seed(global_config.seed, deterministic=args.deterministic)

    # select device
    # dist init
    if torch.cuda.device_count() > 1 and args.distributed:
        device = init_dist(launcher='pytorch',
                           backend='nccl',
                           rank=args.local_rank)
        global_config['distributed'] = True
    else:
        device, gpu_ids = select_device(global_config.gpu_ids)
        global_config.gpu_ids = gpu_ids
        global_config['distributed'] = False

    # build train dataset
    train_dataset = build_dataset(cfg.train_data.dataset)
    train_loader = build_dataloader(train_dataset,
                                    loader_cfg=cfg.train_data.loader,
                                    distributed=global_config['distributed'])

    # if is eval , build eval dataloader,postprocess,metric
    # 移动到前面,由于rec-head的输出需要用postprocess计算
    if global_config.is_eval:
        eval_dataset = build_dataset(cfg.test_data.dataset)
        eval_loader = build_dataloader(
            eval_dataset,
            loader_cfg=cfg.test_data.loader,
            distributed=global_config['distributed'])
        # build postprocess
        postprocess = build_postprocess(cfg.postprocess)
        # build metric
        metric = build_metrics(cfg.metric)
    else:
        eval_loader = None
        postprocess = None
        metric = None

    # for rec cal head number
    if hasattr(postprocess, 'character'):
        char_num = len(getattr(postprocess, 'character'))
        cfg.model.head.n_class = char_num

    # build model
    model = build_model(cfg.model)
    model = model.to(device)

    # set model to device
    if device.type != 'cpu' and torch.cuda.device_count(
    ) > 1 and global_config['distributed'] == True:
        model = DDP(model,
                    device_ids=[args.local_rank],
                    output_device=args.local_rank)
        device = torch.device('cuda', args.local_rank)
        is_cuda = True
    elif device.type != 'cpu' and global_config[
            'distributed'] == False and len(gpu_ids) >= 1:
        model = nn.DataParallel(model, device_ids=global_config.gpu_ids)
        model.gpu_ids = gpu_ids
        is_cuda = True
    else:
        is_cuda = False

    global_config['is_cuda'] = is_cuda

    model.device = device

    # build optimizer
    optimizer = build_optimizer(cfg.optimizer, model)
    # build lr_scheduler
    lr_scheduler = build_lr_scheduler(cfg.lr_scheduler, optimizer)
    # build loss
    criterion = build_loss(cfg.loss).to(device)

    runner = TrainRunner(global_config, model, optimizer, lr_scheduler,
                         postprocess, criterion, train_loader, eval_loader,
                         metric, logger)

    # # Resume
    if global_config.resume_from is not None and args.resume:
        runner.resume(global_config.resume_from, map_location=device)

    if global_config.load_from is not None:
        runner.load_checkpoint(global_config.load_from, map_location=device)

    runner.run()
コード例 #9
0
def main():
    args = parse_args()
    cfg_path = args.config
    cfg = Config.fromfile(cfg_path)
    # set pretrained model None
    cfg.model.pretrained = None

    # build postprocess
    postprocess = build_postprocess(cfg.postprocess)
    # for rec cal head number
    if hasattr(postprocess, 'character'):
        char_num = len(getattr(postprocess, 'character'))
        cfg.model.head.n_class = char_num

    # use config build model
    model = build_model(cfg.model)

    # set weights to model and set model to device/eval()
    model_path = args.weights
    device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
    load_checkpoint(model, model_path, map_location=device)
    model = model.to(device)
    model.eval()

    onnx_output = args.onnx_output
    input_shape = args.input_shape
    input_shape = eval(input_shape)
    mode = args.mode


    # transform torch model to onnx model
    input_names = ['input']
    output_names = ['output']

    # input shape
    input_data = torch.randn(input_shape).to(device)

    if args.is_dynamic:
        if mode == 'rec':
            # #rec
            dynamic_axes = {"input": {0: "batch_size"}, "output": {0: "batch_size"}}
        elif mode == 'det':
            ## det
            dynamic_axes = {"input": {0: "batch_size", 2: 'height', 3: 'width'},
                            "output": {0: "batch_size", 2: 'height', 3: 'width'}}

    else:
        dynamic_axes = None

    onnx_model_name = torch2onnx(
        model=model,
        dummy_input=input_data,
        onnx_model_name=onnx_output,
        input_names=input_names,
        output_names=output_names,
        opset_version=12,
        is_dynamic=args.is_dynamic,
        dynamic_axes=dynamic_axes
    )

    onnx_model = onnx.load(onnx_model_name)
    # check that the model converted fine
    onnx.checker.check_model(onnx_model)
    onnx.helper.printable_graph(onnx_model.graph)
    print("Model was successfully converted to ONNX format.")
    print("It was saved to", onnx_model_name)
コード例 #10
0
sys.path.append('./')

os.environ['CUDA_VISIBLE_DEVICES'] = '1'
from torchocr.models import build_model
from torchocr.models import build_head

device = torch.device('cuda:0')

det_data = torch.randn(1, 3, 640, 640).to(device)

db_model = dict(
    type='DetectionModel',
    transform=None,
    backbone=dict(type='DetResNet', in_channels=3, depth=50),
    neck=dict(type='EASTWithUnet',
              in_channels=[256, 512, 1024, 2048],
              out_channels=128),
    # head=dict(
    #     type='C2TDHead',
    #     in_channels=3,
    # ),
    head=None)

det_model = build_model(cfg=db_model)
# print(det_model)
det_model = det_model.to(device)
y = det_model(det_data)

print(y.shape)