コード例 #1
0
def main():
    global args
    set_random_seed(1)
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices
    log_name = 'test.log' if args.evaluate else 'train.log'
    log_name += time.strftime('-%Y-%m-%d-%H-%M-%S')
    sys.stdout = Logger(osp.join(args.save_dir, log_name))
    print('** Arguments **')
    arg_keys = list(args.__dict__.keys())
    arg_keys.sort()
    for key in arg_keys:
        print('{}: {}'.format(key, args.__dict__[key]))
    torch.backends.cudnn.benchmark = True

    datamanager = ImageDataManager(batch_size=args.batch_size)
    trainloader, queryloader, galleryloader = datamanager.return_dataloaders()

    print('Building model: {}'.format(args.arch))
    model = build_model(args.arch,
                        4000,
                        args.bias,
                        args.bnneck,
                        pretrained=(not args.no_pretrained))

    if args.load_weights and check_isfile(args.load_weights):
        load_pretrained_weights(model, args.load_weights)

    model.cuda()

    if args.evaluate:
        evaluate(model, queryloader, galleryloader, args.dist_metric,
                 args.normalize_feature)
        return

    criterion = CrossEntropyLoss(4000)
    optimizer = torch.optim.Adam(model.parameters(),
                                 lr=0.0003,
                                 weight_decay=5e-04,
                                 betas=(0.9, 0.999))
    scheduler = build_lr_scheduler(optimizer, args.lr_scheduler, args.stepsize)

    time_start = time.time()
    print('=> Start training')
    for epoch in range(args.start_epoch, args.max_epoch):
        train(epoch, model, criterion, optimizer, trainloader)
        scheduler.step()
        if (epoch + 1) % 20 == 0:
            save_checkpoint(
                {
                    'state_dict': model.state_dict(),
                    'epoch': epoch + 1,
                    'optimizer': optimizer.state_dict(),
                }, args.save_dir)
            evaluate(model, queryloader, galleryloader, args.dist_metric,
                     args.normalize_feature)
    elapsed = round(time.time() - time_start)
    elapsed = str(datetime.timedelta(seconds=elapsed))
    print('Elapsed {}'.format(elapsed))
コード例 #2
0
    def __init__(
        self,
        model_name='',
        model_path='',
        image_size=(256, 128),
        pixel_mean=[0.485, 0.456, 0.406],
        pixel_std=[0.229, 0.224, 0.225],
        pixel_norm=True,
        device='cuda',
        verbose=True
    ):
        # Build model
        model = build_model(
            model_name,
            num_classes=1,
            pretrained=True,
            use_gpu=device.startswith('cuda')
        )
        model.eval()

        num_params, flops = compute_model_complexity(
            model, (1, 3, image_size[0], image_size[1])
        )

        if verbose:
            print('Model: {}'.format(model_name))
            print('- params: {:,}'.format(num_params))
            print('- flops: {:,}'.format(flops))

        if model_path and check_isfile(model_path):
            load_pretrained_weights(model, model_path)

        # Build transform functions
        transforms = []
        transforms += [T.Resize(image_size)]
        transforms += [T.ToTensor()]
        if pixel_norm:
            transforms += [T.Normalize(mean=pixel_mean, std=pixel_std)]
        preprocess = T.Compose(transforms)

        to_pil = T.ToPILImage()

        device = torch.device(device)
        model.to(device)

        # Class attributes
        self.model = model
        self.preprocess = preprocess
        self.to_pil = to_pil
        self.device = device
コード例 #3
0
    def __init__(self,
                 config_path='',
                 model_path='',
                 device='cuda',
                 verbose=True):
        # Build model
        cfg = get_default_config()
        merge_from_files_with_base(cfg, config_path)
        cfg.use_gpu = device.startswith('cuda')
        model = build_model(**model_kwargs(cfg, 1))
        model.eval()

        image_size = (cfg.data.height, cfg.data.width)
        flops, num_params = get_model_complexity_info(
            model, (3, image_size[0], image_size[1]),
            as_strings=False,
            verbose=False,
            print_per_layer_stat=False)

        if verbose:
            print('Model: {}'.format(cfg.model.name))
            print('- params: {:,}'.format(num_params))
            print('- flops: {:,}'.format(flops))

        if model_path and check_isfile(model_path):
            load_pretrained_weights(model, model_path)

        # Build transform functions
        transforms = []
        transforms += [T.Resize(image_size)]
        transforms += [T.ToTensor()]
        print(cfg.data.norm_mean, cfg.data.norm_std)
        transforms += [
            T.Normalize(mean=cfg.data.norm_mean, std=cfg.data.norm_std)
        ]
        preprocess = T.Compose(transforms)

        to_pil = T.ToPILImage()

        device = torch.device(device)
        model.to(device)

        # Class attributes
        self.model = model
        self.preprocess = preprocess
        self.to_pil = to_pil
        self.device = device
コード例 #4
0
def main():
    global args
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices
    torch.backends.cudnn.benchmark = True

    datamanager = ImageDataManager(batch_size=args.batch_size)
    trainloader, queryloader, galleryloader = datamanager.return_dataloaders()

    print('Building model: {}'.format(args.arch))
    model = build_model(args.arch, 4768, args.bias, args.bnneck)

    if args.load_weights and check_isfile(args.load_weights):
        load_pretrained_weights(model, args.load_weights)

    model.cuda()
    test(model, queryloader, galleryloader, args.dist_metric,
         args.normalize_feature)
コード例 #5
0
    def __init__(self, model_type, use_cuda=True):
        self.device = "cuda" if torch.cuda.is_available(
        ) and use_cuda else "cpu"
        self.input_width = 128
        self.input_height = 256

        self.model = models.build_model(name=model_type, num_classes=1000)
        self.model.to(self.device)
        self.model.eval()

        logger = logging.getLogger("root.tracker")
        logger.info("Selected model type: {}".format(model_type))
        self.size = (self.input_width, self.input_height)
        self.norm = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
        ])
コード例 #6
0
def main():
    parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
    parser.add_argument('--config-file', type=str, default='', required=True,
                        help='Path to config file')
    parser.add_argument('--output-name', type=str, default='model',
                        help='Path to save ONNX model')
    parser.add_argument('--num-classes', type=int, nargs='+', default=None)
    parser.add_argument('--opset', type=int, default=11)
    parser.add_argument('--verbose', action='store_true',
                        help='Verbose mode for onnx.export')
    parser.add_argument('--disable-dyn-axes', default=False, action='store_true')
    parser.add_argument('--export_ir', action='store_true')
    parser.add_argument('opts', default=None, nargs=argparse.REMAINDER,
                        help='Modify config options using the command-line')
    args = parser.parse_args()

    cfg = get_default_config()
    cfg.use_gpu = torch.cuda.is_available()
    if args.config_file:
        merge_from_files_with_base(cfg, args.config_file)
    reset_config(cfg)
    cfg.merge_from_list(args.opts)

    compression_hyperparams = get_compression_hyperparams(cfg.model.load_weights)
    is_nncf_used = compression_hyperparams['enable_quantization'] or compression_hyperparams['enable_pruning']
    if is_nncf_used:
        print(f'Using NNCF -- making NNCF changes in config')
        cfg = make_nncf_changes_in_config(cfg,
                                          compression_hyperparams['enable_quantization'],
                                          compression_hyperparams['enable_pruning'],
                                          args.opts)
    cfg.train.mix_precision = False
    cfg.freeze()
    num_classes = parse_num_classes(source_datasets=cfg.data.sources,
                                    classification=cfg.model.type == 'classification' or cfg.model.type == 'multilabel',
                                    num_classes=args.num_classes,
                                    snap_path=cfg.model.load_weights)
    model = build_model(**model_kwargs(cfg, num_classes))
    if cfg.model.load_weights:
        load_pretrained_weights(model, cfg.model.load_weights)
    else:
        warnings.warn("No weights are passed through 'load_weights' parameter! "
              "The model will be converted with random or pretrained weights", category=RuntimeWarning)
    if 'tresnet' in cfg.model.name:
        patch_InplaceAbn_forward()
    if is_nncf_used:
        print('Begin making NNCF changes in model')
        model = make_nncf_changes_in_eval(model, cfg)
        print('End making NNCF changes in model')
    onnx_file_path = export_onnx(model=model.eval(),
                                 cfg=cfg,
                                 output_file_path=args.output_name,
                                 disable_dyn_axes=args.disable_dyn_axes,
                                 verbose=args.verbose,
                                 opset=args.opset,
                                 extra_check=True)
    if args.export_ir:
        input_shape = [1, 3, cfg.data.height, cfg.data.width]
        export_ir(onnx_model_path=onnx_file_path,
                  norm_mean=cfg.data.norm_mean,
                  norm_std=cfg.data.norm_std,
                  input_shape=input_shape,
                  optimized_model_dir=os.path.dirname(os.path.abspath(onnx_file_path)),
                  data_type='FP32')
コード例 #7
0
ファイル: train_soft.py プロジェクト: Zoesxw/torchreid_tiny
def main():
    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter)
    parser.add_argument('--config-file',
                        type=str,
                        default='',
                        help='path to config file')
    parser.add_argument(
        '--gpu-devices',
        type=str,
        default='',
    )
    parser.add_argument('opts',
                        default=None,
                        nargs=argparse.REMAINDER,
                        help='Modify config options using the command-line')
    args = parser.parse_args()

    cfg = get_default_config()
    if args.config_file:
        cfg.merge_from_file(args.config_file)
    cfg.merge_from_list(args.opts)
    set_random_seed(cfg.train.seed)
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices
    log_name = 'test.log' if cfg.test.evaluate else 'train.log'
    log_name += time.strftime('-%Y-%m-%d-%H-%M-%S')
    sys.stdout = Logger(osp.join(cfg.data.save_dir, log_name))
    print('Show configuration\n{}\n'.format(cfg))
    torch.backends.cudnn.benchmark = True

    datamanager = ImageDataManager(**imagedata_kwargs(cfg))
    trainloader, queryloader, galleryloader = datamanager.return_dataloaders()
    print('Building model: {}'.format(cfg.model.name))
    model = build_model(cfg.model.name,
                        datamanager.num_train_pids,
                        'softmax',
                        pretrained=cfg.model.pretrained)

    if cfg.model.load_weights and check_isfile(cfg.model.load_weights):
        load_pretrained_weights(model, cfg.model.load_weights)

    model = nn.DataParallel(model).cuda()

    criterion = CrossEntropyLoss(datamanager.num_train_pids,
                                 label_smooth=cfg.loss.softmax.label_smooth)
    optimizer = build_optimizer(model, **optimizer_kwargs(cfg))
    scheduler = build_lr_scheduler(optimizer, **lr_scheduler_kwargs(cfg))

    if cfg.model.resume and check_isfile(cfg.model.resume):
        cfg.train.start_epoch = resume_from_checkpoint(cfg.model.resume,
                                                       model,
                                                       optimizer=optimizer)

    if cfg.test.evaluate:
        distmat = evaluate(model,
                           queryloader,
                           galleryloader,
                           dist_metric=cfg.test.dist_metric,
                           normalize_feature=cfg.test.normalize_feature,
                           rerank=cfg.test.rerank,
                           return_distmat=True)
        if cfg.test.visrank:
            visualize_ranked_results(distmat,
                                     datamanager.return_testdataset(),
                                     'image',
                                     width=cfg.data.width,
                                     height=cfg.data.height,
                                     save_dir=osp.join(cfg.data.save_dir,
                                                       'visrank'))
        return

    time_start = time.time()
    print('=> Start training')
    for epoch in range(cfg.train.start_epoch, cfg.train.max_epoch):
        train(epoch,
              cfg.train.max_epoch,
              model,
              criterion,
              optimizer,
              trainloader,
              fixbase_epoch=cfg.train.fixbase_epoch,
              open_layers=cfg.train.open_layers)
        scheduler.step()
        if (epoch + 1) % cfg.test.eval_freq == 0 or (epoch +
                                                     1) == cfg.train.max_epoch:
            rank1 = evaluate(model,
                             queryloader,
                             galleryloader,
                             dist_metric=cfg.test.dist_metric,
                             normalize_feature=cfg.test.normalize_feature,
                             rerank=cfg.test.rerank)
            save_checkpoint(
                {
                    'state_dict': model.state_dict(),
                    'epoch': epoch + 1,
                    'rank1': rank1,
                    'optimizer': optimizer.state_dict(),
                }, cfg.data.save_dir)
    elapsed = round(time.time() - time_start)
    elapsed = str(datetime.timedelta(seconds=elapsed))
    print('Elapsed {}'.format(elapsed))
コード例 #8
0
def main():

    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter)
    parser.add_argument('--config-file',
                        type=str,
                        default='',
                        help='Path to config file')
    parser.add_argument('--output-name',
                        type=str,
                        default='model',
                        help='Path to save ONNX model')
    parser.add_argument('--opset', type=int, default=9)
    parser.add_argument('--verbose',
                        default=False,
                        action='store_true',
                        help='Verbose mode for onnx.export')
    parser.add_argument('opts',
                        default=None,
                        nargs=argparse.REMAINDER,
                        help='Modify config options using the command-line')
    args = parser.parse_args()

    cfg = get_default_config()
    cfg.use_gpu = torch.cuda.is_available()
    if args.config_file:
        cfg.merge_from_file(args.config_file)
    reset_config(cfg)
    cfg.merge_from_list(args.opts)
    cfg.freeze()

    num_classes = parse_num_classes(cfg.data.sources)
    model = build_model(**model_kwargs(cfg, num_classes))
    load_pretrained_weights(model, cfg.model.load_weights)
    model.eval()

    transform = build_inference_transform(
        cfg.data.height,
        cfg.data.width,
        norm_mean=cfg.data.norm_mean,
        norm_std=cfg.data.norm_std,
    )

    input_img = random_image(cfg.data.height, cfg.data.width)
    input_blob = transform(input_img).unsqueeze(0)

    input_names = ['data']
    output_names = ['reid_embedding']
    dynamic_axes = {
        'data': {
            0: 'batch_size',
            1: 'channels',
            2: 'height',
            3: 'width'
        },
        'reid_embedding': {
            0: 'batch_size',
            1: 'dim'
        }
    }

    output_file_path = args.output_name
    if not args.output_name.endswith('.onnx'):
        output_file_path += '.onnx'

    register_op("group_norm", group_norm_symbolic, "", args.opset)
    with torch.no_grad():
        torch.onnx.export(
            model,
            input_blob,
            output_file_path,
            verbose=args.verbose,
            export_params=True,
            input_names=input_names,
            output_names=output_names,
            dynamic_axes=dynamic_axes,
            opset_version=args.opset,
            operator_export_type=torch.onnx.OperatorExportTypes.ONNX)

    net_from_onnx = onnx.load(output_file_path)
    try:
        onnx.checker.check_model(net_from_onnx)
        print('ONNX check passed.')
    except onnx.onnx_cpp2py_export.checker.ValidationError as ex:
        print('ONNX check failed: {}.'.format(ex))
コード例 #9
0
    sampler = 'RandomIdentitySampler'
else:
    sampler = 'RandomSampler'

# print(weights_path, save_path, height, width, model_name, sampler)

torchreid.data.register_image_dataset('veri_dataset', VeRiDataset)

datamanager = torchreid.data.ImageDataManager(
    root='..Dataset/VeRi_with_plate/',
    sources='veri_dataset',
    height=height,
    width=width,
    train_sampler=sampler)

model = models.build_model(name=model_name, num_classes=575)
model = model.cuda()

torchreid.utils.load_pretrained_weights(model, weights_path)
optimizer = torchreid.optim.build_optimizer(model, optim='adam', lr=0.0003)

if loss == "triplet":
    engine = torchreid.engine.ImageTripletEngine(datamanager, model, optimizer)
else:
    engine = torchreid.engine.ImageSoftmaxEngine(datamanager, model, optimizer)

engine.run(test_only=True,
           save_dir=save_path,
           visrank=True,
           visrank_topk=vis_topk)