コード例 #1
0
def custom_maskrcnn_resnet_fpn(backbone,
                               pretrained=True,
                               progress=True,
                               num_classes=91,
                               pretrained_backbone=True,
                               trainable_backbone_layers=3,
                               **kwargs):
    backbone_name = backbone['name']
    backbone_params_config = backbone['params']
    assert 0 <= trainable_backbone_layers <= 5
    # dont freeze any layers if pretrained model or backbone is not used
    if not (pretrained or pretrained_backbone):
        backbone_params_config['trainable_backbone_layers'] = 5
    if pretrained:
        # no need to download the backbone if pretrained is set
        backbone_params_config['pretrained'] = False

    backbone_model = custom_resnet_fpn_backbone(backbone_name,
                                                backbone_params_config)
    model = MaskRCNN(backbone_model, num_classes, **kwargs)
    if pretrained and backbone_name.endswith('resnet50'):
        state_dict = load_state_dict_from_url(
            maskrcnn_model_urls['maskrcnn_resnet50_fpn_coco'],
            progress=progress)
        model.load_state_dict(state_dict, strict=False)
    return model
コード例 #2
0
ファイル: model.py プロジェクト: sweiichen/tiny-pascal-voc
def get_instance_segmentation_model(num_classes, backbone, dropout=False):
    # load an instance segmentation model where backbone is pretrained ImageNet
    backbone = resnet_fpn_backbone(backbone, pretrained=True)
    model = MaskRCNN(backbone, num_classes)

    if dropout:
        # add drop out after FC layer of box head
        resolution = model.roi_heads.box_roi_pool.output_size[0]
        representation_size = 1024
        model.roi_heads.box_head = TwoMLPHead(
            backbone.out_channels * resolution**2, representation_size)
        # add drop out in mask head
        mask_layers = (256, 256, 256, 256)
        mask_dilation = 1
        model.roi_heads.mask_head = MaskRCNNHeads(backbone.out_channels,
                                                  mask_layers, mask_dilation)

    # get the number of input features for the classifier
    in_features = model.roi_heads.box_predictor.cls_score.in_features
    # replace the pre-trained head with a new one
    model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes)

    # now get the number of input features for the mask classifier
    in_features_mask = model.roi_heads.mask_predictor.conv5_mask.in_channels
    hidden_layer = 256

    # and replace the mask predictor with a new one
    model.roi_heads.mask_predictor = MaskRCNNPredictor(in_features_mask,
                                                       hidden_layer,
                                                       num_classes)

    return model
コード例 #3
0
def maskrcnn_mobileNetV3_fpn(num_classes=3, backbone_chkp=False, **kwargs):
    '''
    This function builds torchvision version of MASK RCNN using FPN-mobileNetV3 backbone.
    '''

    from torchvision.models.detection.mask_rcnn import MaskRCNN
    backbone = mobilenetV3_fpn_backbone(backbone_chkp)
    return MaskRCNN(backbone, num_classes, **kwargs)
コード例 #4
0
ファイル: apps.py プロジェクト: droidLight/object_detector
class DetectorConfig(AppConfig):
    name = 'detector'

    #load model
    model_path = 'detector/saved_models/maskrcnn_resnet50_fpn_coco-bf2d0c1e.pth'
    backbone = backbone = resnet_fpn_backbone('resnet50', False)
    maskRCNNModel = MaskRCNN(backbone, 91)
    checkpoint = torch.load(model_path)
    maskRCNNModel.load_state_dict(checkpoint)
    maskRCNNModel.eval()
    print("Model Loaded")
コード例 #5
0
def fasterrcnn_resnet_fpn(pretrained_path=None,
                          backbone='resnet50',
                          num_classes=91,
                          pretrained_backbone=True,
                          mask=False,
                          hidden_layer=256,
                          **kwargs):
    """
    Based on torchvision.models.detection.faster_rcnn
    """
    if pretrained_path is not None:
        # no need to download the backbone if pretrained is set
        pretrained_backbone = False
    backbone = resnet_fpn_backbone(backbone, pretrained_backbone)

    if mask:
        model = MaskRCNN(backbone, num_classes, **kwargs)
    else:
        model = FasterRCNN(backbone, num_classes, **kwargs)

    # === handle non-standard case (different number of classes)
    if num_classes != 91:
        # get number of input features for the classifier
        in_features = model.roi_heads.box_predictor.cls_score.in_features
        # replace the pre-trained head with a new one
        model.roi_heads.box_predictor = FastRCNNPredictor(
            in_features, num_classes)

    # === Mask-RCNN or not
    if mask:
        # now get the number of input features for the mask classifier
        in_features_mask = model.roi_heads.mask_predictor.conv5_mask.in_channels
        # and replace the mask predictor with a new one
        model.roi_heads.mask_predictor = MaskRCNNPredictor(
            in_features_mask, hidden_layer, num_classes)

    if pretrained_path is not None:
        state_dict = torch.load(pretrained_path)
        model.load_state_dict(state_dict)

    return model
コード例 #6
0
ファイル: train.py プロジェクト: ofekp/imat
def get_model_instance_segmentation_efficientnet(model_name,
                                                 num_classes,
                                                 target_dim,
                                                 freeze_batch_norm=False):
    print("Using EffDet detection model")

    roi_pooler = torchvision.ops.MultiScaleRoIAlign(featmap_names=[0],
                                                    output_size=7,
                                                    sampling_ratio=2)
    # ofekp: note that roi_pooler is passed to box_roi_pooler in the MaskRCNN network
    # and is not being used in roi_heads.py

    mask_roi_pool = MultiScaleRoIAlign(featmap_names=[0, 1, 2, 3],
                                       output_size=14,
                                       sampling_ratio=2)

    config = effdet.get_efficientdet_config(model_name)
    efficientDetModelTemp = EfficientDet(config, pretrained_backbone=False)
    load_pretrained(efficientDetModelTemp, config.url)
    config.num_classes = num_classes
    config.image_size = target_dim

    out_channels = config.fpn_channels  # This is since the config of 'tf_efficientdet_d5' creates fpn outputs with num of channels = 288
    backbone_fpn = BackboneWithCustomFPN(
        config, efficientDetModelTemp.backbone, efficientDetModelTemp.fpn,
        out_channels
    )  # TODO(ofekp): pretrained! # from the repo trainable_layers=trainable_backbone_layers=3
    model = MaskRCNN(
        backbone_fpn,
        min_size=target_dim,
        max_size=target_dim,
        num_classes=num_classes,
        mask_roi_pool=mask_roi_pool,
        #                  rpn_anchor_generator=anchor_generator,
        box_roi_pool=roi_pooler)

    # for training with different number of classes (default is 90) we need to add this line
    # TODO(ofekp): we might want to init weights of the new HeadNet
    class_net = HeadNet(config,
                        num_outputs=config.num_classes,
                        norm_kwargs=dict(eps=.001, momentum=.01))
    efficientDetModel = EfficientDetBB(config, class_net,
                                       efficientDetModelTemp.box_net)
    model.roi_heads.box_predictor = DetBenchTrain(efficientDetModel, config)

    if freeze_batch_norm:
        # we only freeze BN layers in backbone and the BiFPN
        print("Freezing batch normalization weights")
        freeze_bn(model.backbone)

    return model
コード例 #7
0
def custom_maskrcnn_resnet_fpn(backbone,
                               pretrained=True,
                               progress=True,
                               num_classes=91,
                               pretrained_backbone=True,
                               trainable_backbone_layers=3,
                               **kwargs):
    backbone_name = backbone['name']
    backbone_params_config = backbone['params']
    assert 0 <= trainable_backbone_layers <= 5
    # dont freeze any layers if pretrained model or backbone is not used
    if not (pretrained or pretrained_backbone):
        backbone_params_config['trainable_backbone_layers'] = 5
    if pretrained:
        # no need to download the backbone if pretrained is set
        backbone_params_config['pretrained'] = False

    backbone_model = custom_resnet_fpn_backbone(backbone_name,
                                                backbone_params_config)
    num_feature_maps = len(backbone_model.body.return_layers)
    box_roi_pool = None if num_feature_maps == 4 \
        else MultiScaleRoIAlign(featmap_names=[str(i) for i in range(num_feature_maps)],
                                output_size=7, sampling_ratio=2)
    mask_roi_pool = None if num_feature_maps == 4 \
        else MultiScaleRoIAlign(featmap_names=[str(i) for i in range(num_feature_maps)],
                                output_size=14, sampling_ratio=2)
    model = MaskRCNN(backbone_model,
                     num_classes,
                     box_roi_pool=box_roi_pool,
                     mask_roi_pool=mask_roi_pool**kwargs)
    if pretrained and backbone_name.endswith('resnet50'):
        state_dict = load_state_dict_from_url(
            maskrcnn_model_urls['maskrcnn_resnet50_fpn_coco'],
            progress=progress)
        model.load_state_dict(state_dict, strict=False)
    return model
コード例 #8
0
ファイル: model.py プロジェクト: anrim/icevision
def model(
    num_classes: int,
    backbone: Optional[nn.Module] = None,
    remove_internal_transforms: bool = True,
    pretrained: bool = True,
    **mask_rcnn_kwargs
) -> nn.Module:
    """MaskRCNN model implemented by torchvision.

    # Arguments
        num_classes: Number of classes.
        backbone: Backbone model to use. Defaults to a resnet50_fpn model.
        remove_internal_transforms: The torchvision model internally applies transforms
        like resizing and normalization, but we already do this at the `Dataset` level,
        so it's safe to remove those internal transforms.
        pretrained: Argument passed to `maskrcnn_resnet50_fpn` if `backbone is None`.
        By default it is set to True: this is generally used when training a new model (transfer learning).
        `pretrained = False`  is used during inference (prediction) for cases where the users have their own pretrained weights.
        **mask_rcnn_kwargs: Keyword arguments that internally are going to be passed to
        `torchvision.models.detection.mask_rcnn.MaskRCNN`.

    # Return
        A Pytorch `nn.Module`.
    """
    if backbone is None:
        model = maskrcnn_resnet50_fpn(
            pretrained=pretrained, pretrained_backbone=pretrained, **mask_rcnn_kwargs
        )

        in_features_box = model.roi_heads.box_predictor.cls_score.in_features
        model.roi_heads.box_predictor = FastRCNNPredictor(in_features_box, num_classes)

        in_features_mask = model.roi_heads.mask_predictor.conv5_mask.in_channels
        model.roi_heads.mask_predictor = MaskRCNNPredictor(
            in_channels=in_features_mask, dim_reduced=256, num_classes=num_classes
        )

        backbone_param_groups = resnet_fpn.param_groups(model.backbone)
    else:
        model = MaskRCNN(backbone, num_classes=num_classes, **mask_rcnn_kwargs)
        backbone_param_groups = backbone.param_groups()

    patch_param_groups(model=model, backbone_param_groups=backbone_param_groups)

    if remove_internal_transforms:
        remove_internal_model_transforms(model)

    return model
コード例 #9
0
ファイル: assitant_2.py プロジェクト: AAlben/segementation_1
def maskrcnn_resnet18_fpn(num_classes):
    src_backbone = torchvision.models.resnet18(pretrained=True)
    # 去掉后面的全连接层
    return_layers = {'layer1': 0,
                     'layer2': 1,
                     'layer3': 2,
                     'layer4': 3}
    names = [name for name, _ in src_backbone.named_children()]
    # just 验证,失败则报异常
    if not set(return_layers).issubset(names):
        raise ValueError("return_layers are not present in model")

    orig_return_layers = return_layers
    # 复制一份到 layers
    return_layers = {k: v for k, v in return_layers.items()}
    layers = OrderedDict()
    for name, module in src_backbone.named_children():
        layers[name] = module
        if name in return_layers:
            del return_layers[name]
        if not return_layers:
            break

    # 得到去掉池化、全连接层的模型
    backbone_module = backbone_body(layers, orig_return_layers)

    # FPN层,resnet18 layer4 chanels为 512,fpn顶层512/8
    in_channels_stage2 = 64
    in_channels_list = [
        in_channels_stage2,
        in_channels_stage2 * 2,
        in_channels_stage2 * 4,
        in_channels_stage2 * 8,
    ]
    out_channels = 64

    fpn = FeaturePyramidNetwork(
        in_channels_list=in_channels_list,
        out_channels=out_channels,
        extra_blocks=LastLevelMaxPool(),
    )
    backbone_fpn = BackboneFPN(backbone_module,
                               fpn,
                               out_channels)
    model = MaskRCNN(backbone_fpn, num_classes)
    return model
コード例 #10
0
ファイル: model.py プロジェクト: potipot/icevision
def model(num_classes: int,
          backbone: Optional[TorchvisionBackboneConfig] = None,
          remove_internal_transforms: bool = True,
          **mask_rcnn_kwargs) -> nn.Module:
    """MaskRCNN model implemented by torchvision.

    # Arguments
        num_classes: Number of classes.
        backbone: Backbone model to use. Defaults to a resnet50_fpn model.
        remove_internal_transforms: The torchvision model internally applies transforms
        like resizing and normalization, but we already do this at the `Dataset` level,
        so it's safe to remove those internal transforms.
        **mask_rcnn_kwargs: Keyword arguments that internally are going to be passed to
        `torchvision.models.detection.mask_rcnn.MaskRCNN`.

    # Return
        A Pytorch `nn.Module`.
    """
    if backbone is None:
        model = maskrcnn_resnet50_fpn(pretrained=True,
                                      pretrained_backbone=True,
                                      **mask_rcnn_kwargs)

        in_features_box = model.roi_heads.box_predictor.cls_score.in_features
        model.roi_heads.box_predictor = FastRCNNPredictor(
            in_features_box, num_classes)

        in_features_mask = model.roi_heads.mask_predictor.conv5_mask.in_channels
        model.roi_heads.mask_predictor = MaskRCNNPredictor(
            in_channels=in_features_mask,
            dim_reduced=256,
            num_classes=num_classes)

        resnet_fpn.patch_param_groups(model.backbone)
    else:
        model = MaskRCNN(backbone.backbone,
                         num_classes=num_classes,
                         **mask_rcnn_kwargs)

    patch_rcnn_param_groups(model=model)

    if remove_internal_transforms:
        remove_internal_model_transforms(model)

    return model
コード例 #11
0
def get_model_instance_segmentation(num_classes):
    # load an instance segmentation model pre-trained pre-trained on COCO
    backbone = ResnestBackboneWithFPN()
    model = MaskRCNN(backbone, num_classes=21, min_size=500, max_size=500)
    #     model = torchvision.models.detection.mask_rcnn.maskrcnn_resnet50_fpn(pretrained=True, min_size=500, max_size=600)
    # get number of input features for the classifier
    in_features = model.roi_heads.box_predictor.cls_score.in_features
    # replace the pre-trained head with a new one
    model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes)

    # now get the number of input features for the mask classifier
    in_features_mask = model.roi_heads.mask_predictor.conv5_mask.in_channels
    hidden_layer = 256
    # and replace the mask predictor with a new one
    model.roi_heads.mask_predictor = MaskRCNNPredictor(in_features_mask,
                                                       hidden_layer,
                                                       num_classes)

    return model
コード例 #12
0
def make_model(cfg):
    """Initializes the model.

    Args:
        cfg (Config): pass in all configurations
    """

    if cfg.model_name == 'maskrcnn_resnet50_fpn':
        if cfg.coco_pretrained:
            model = maskrcnn_resnet50_fpn(pretrained=True)
        else:
            model = maskrcnn_resnet50_fpn(num_classes=cfg.num_classes,
                                          pretrained=False)
        pretrained_num_classes = (
            model.roi_heads.mask_predictor.mask_fcn_logits.out_channels)
        swap_predictors = ((cfg.num_classes != pretrained_num_classes)
                           or cfg.swap_model_predictors)
        if swap_predictors:
            # replace the pre-trained FasterRCNN head with a new one
            model.roi_heads.box_predictor = FastRCNNPredictor(
                # in_features
                model.roi_heads.box_predictor.cls_score.in_features,
                # num_classes
                cfg.num_classes)
            # replace the pre-trained MaskRCNN head with a new one
            model.roi_heads.mask_predictor = MaskRCNNPredictor(
                # in_features_mask
                model.roi_heads.mask_predictor.conv5_mask.in_channels,
                # hidden_layer
                model.roi_heads.mask_predictor.conv5_mask.out_channels,
                # num_classes
                cfg.num_classes)
    elif cfg.model_name == 'adjust_anchor':
        anchor_generator = AnchorGenerator(
            sizes=((16, ), (32, ), (64, ), (128, ), (256, )),
            aspect_ratios=((0.8, 1.0, 1.25), ) * 5)
        backbone = resnet_fpn_backbone('resnet50', pretrained=True)
        model = MaskRCNN(backbone=backbone,
                         num_classes=cfg.num_classes,
                         rpn_anchor_generator=anchor_generator)
    else:
        raise NotImplementedError
    return model
コード例 #13
0
def model(num_classes: int,
          backbone: Optional[nn.Module] = None,
          remove_internal_transforms: bool = True,
          **faster_rcnn_kwargs) -> nn.Module:
    """ FasterRCNN model given by torchvision

    Args:
        num_classes (int): Number of classes.
        backbone (nn.Module): Backbone model to use. Defaults to a resnet50_fpn model.

    Return:
        nn.Module
    """
    if backbone is None:
        model = maskrcnn_resnet50_fpn(pretrained=True, **faster_rcnn_kwargs)

        in_features_box = model.roi_heads.box_predictor.cls_score.in_features
        model.roi_heads.box_predictor = FastRCNNPredictor(
            in_features_box, num_classes)

        in_features_mask = model.roi_heads.mask_predictor.conv5_mask.in_channels
        model.roi_heads.mask_predictor = MaskRCNNPredictor(
            in_channels=in_features_mask,
            dim_reduced=256,
            num_classes=num_classes)

        backbone_param_groups = resnet_fpn.param_groups(model.backbone)
    else:
        model = MaskRCNN(backbone,
                         num_classes=num_classes,
                         **faster_rcnn_kwargs)
        backbone_param_groups = backbone.param_groups()

    patch_param_groups(model=model,
                       backbone_param_groups=backbone_param_groups)

    if remove_internal_transforms:
        remove_internal_model_transforms(model)

    return model
コード例 #14
0
    model_path = cfg.model_folder + model_name
    bifpn = cfg.bifpn

    backbone = backboneNet_efficient()
    backboneFPN = backboneWithFPN(backbone)
    if bifpn == True:
        backboneFPN = backboneWithBiFPN(backbone)

    anchor_sizes = (32, 64, 128, 256, 512)
    aspect_ratios = ((0.5, 1, 2), ) * len(anchor_sizes)
    anchor_generator = AnchorGenerator(anchor_sizes, aspect_ratios)

    model_ft = MaskRCNN(
        backboneFPN,
        num_classes=cfg.num_classes,
        rpn_anchor_generator=anchor_generator,
        min_size=cfg.min_size,
        max_size=cfg.max_size,
    )
    model_ft.to(device)

    optimizer_ft = optim.SGD(
        model_ft.parameters(),
        lr=cfg.learning_rate,
        momentum=cfg.momentum,
        weight_decay=cfg.weight_decay,
    )

    lr_scheduler = lr_scheduler.CosineAnnealingWarmRestarts(
        optimizer_ft, T_0=cfg.epochs, T_mult=cfg.T_mult, eta_min=cfg.eta_min)
コード例 #15
0
ファイル: fasterrcnnNet.py プロジェクト: wucng/torchTools
def get_instance_segmentation_model_cum(num_classes=2,
                                        model_name="resnet101",
                                        pretrained=False,
                                        usize=256,
                                        use_FPN=False):
    # super(FasterRCNN1, self).__init__()
    model_dict = {
        'resnet18': 512,
        'resnet34': 512,
        'resnet50': 2048,
        'resnet101': 2048,
        'resnet152': 2048,
        'resnext50_32x4d': 2048,
        'resnext101_32x8d': 2048,
        'wide_resnet50_2': 2048,
        'wide_resnet101_2': 2048
    }

    assert model_name in model_dict, "%s must be in %s" % (model_name,
                                                           model_dict.keys())

    backbone_size = model_dict[model_name]

    _model = torchvision.models.resnet.__dict__[model_name](
        pretrained=pretrained)

    # backbone = resnet.__dict__[model_name](
    #     pretrained=pretrained,
    #     norm_layer=misc_nn_ops.FrozenBatchNorm2d)

    backbone = nn.Sequential(
        OrderedDict([
            ('conv1', _model.conv1),
            ('bn1', _model.bn1),
            ('relu1', _model.relu),
            ('maxpool1', _model.maxpool),
            ("layer1", _model.layer1),
            ("layer2", _model.layer2),
            ("layer3", _model.layer3),
            ("layer4", _model.layer4),
        ]))

    if use_FPN:
        # freeze layers (layer1)
        for name, parameter in backbone.named_parameters():
            if 'layer2' not in name and 'layer3' not in name and 'layer4' not in name:
                parameter.requires_grad_(False)
        # return_layers = {'layer1': 0, 'layer2': 1, 'layer3': 2, 'layer4': 3}
        return_layers = {
            'layer1': '0',
            'layer2': '1',
            'layer3': '2',
            'layer4': '3'
        }
        in_channels_list = [
            backbone_size // 8,  # 64 layer1 输出特征维度
            backbone_size // 4,  # 128 layer2 输出特征维度
            backbone_size // 2,  # 256 layer3 输出特征维度
            backbone_size,  # 512 layer4 输出特征维度
        ]

        out_channels = usize  # 每个FPN层输出维度 (这个值不固定,也可以设置为64,512等)

        backbone = BackboneWithFPN(backbone, return_layers, in_channels_list,
                                   out_channels)

        # model = FasterRCNN(backbone, num_classes)
        model = MaskRCNN(backbone, num_classes)
    else:
        backbone.out_channels = model_dict[model_name]  # 特征的输出维度
        anchor_generator = AnchorGenerator(sizes=((32, 64, 128, 256, 512), ),
                                           aspect_ratios=((0.5, 1.0, 2.0), ))

        roi_pooler = torchvision.ops.MultiScaleRoIAlign(featmap_names=[str(0)],
                                                        output_size=7,
                                                        sampling_ratio=2)

        mask_roi_pooler = torchvision.ops.MultiScaleRoIAlign(
            featmap_names=[str(0)], output_size=14, sampling_ratio=2)

        # model = FasterRCNN(backbone,
        #                    num_classes=num_classes,
        #                    rpn_anchor_generator=anchor_generator,
        #                    box_roi_pool=roi_pooler)

        model = MaskRCNN(backbone,
                         num_classes,
                         rpn_anchor_generator=anchor_generator,
                         box_roi_pool=roi_pooler,
                         mask_roi_pool=mask_roi_pooler)

    return model
コード例 #16
0
    # model_path = "./models/"+'mask_rcnn_effb7_frozen_bifpn_60_v8_60'
    # model_ft = get_model_instance_segmentation(num_classes=21)
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    backbone = backboneNet_efficient()
    backboneFPN = backboneWithFPN(backbone)

    if cfg.bifpn == True:
        backboneFPN = backboneWithBiFPN(backbone)

    anchor_sizes = (32, 64, 128, 256, 512)
    aspect_ratios = ((0.5, 1, 2),) * len(anchor_sizes)
    anchor_generator = AnchorGenerator(anchor_sizes, aspect_ratios)
    model_ft = MaskRCNN(
        backboneFPN,
        num_classes=cfg.num_classes,
        rpn_anchor_generator=anchor_generator,
        min_size=cfg.min_size,
        max_size=cfg.max_size,
    )
    model_path = cfg.model_folder + cfg.model_name
    model_ft.load_state_dict(torch.load(model_path))

    with torch.cuda.device(0):
        model_ft.eval().to(device)
        with torch.no_grad():
            for iter, imgid in enumerate(cocoGt.imgs):

                image = Image.open(
                    cfg.test_path + cocoGt.loadImgs(ids=imgid)[0]["file_name"]
                )
                image = image.convert("RGB")
コード例 #17
0
                    type=str,
                    default='examples_detection',
                    help='Folder for output images')

if __name__ == '__main__':
    args = parser.parse_args()

    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    root = args.root
    annfile = args.annfile

    # Load a maskRCNN finetuned on our birds
    network_transform = GeneralizedRCNNTransform(800, 1333, (0, 0, 0),
                                                 (1, 1, 1))
    backbone = resnet_fpn_backbone(backbone_name='resnet101', pretrained=False)
    model = MaskRCNN(backbone, num_classes=2)
    model.transform = network_transform
    model.eval()
    model.load_state_dict(torch.load('models/detector.pth'))
    model.to(device)

    # Load a data split
    normalize = T.Normalize(mean=[102.9801, 115.9465, 122.7717],
                            std=[1., 1., 1.])
    coco = COCO(annfile)

    # Load an image example
    available_Ids = coco.getImgIds()
    imgfile = coco.loadImgs(available_Ids[args.index])[0]['file_name']
    imgpath = root + '/' + imgfile
コード例 #18
0
def get_DCN_Resnet(num_classes, **kwargs):
    backbone = resnet_fpn_backbone_DCN('resnet50', pretrained=True)
    model = MaskRCNN(backbone, num_classes, **kwargs)

    return model
コード例 #19
0
# Synchronize at this stage to take into account all configuration
finder.synchronize()
# A bit awkward but the only current way to get the model's device
device = next(finder.net.parameters()).device
# Define custom class, backbone, or model parameters
if finder.params["deep"]["model"].value == "":
    # manually reinstantiate the model with a fully trainable backbone
    from torchvision.models.detection.backbone_utils import resnet_fpn_backbone
    # can change the backbone and its retained pre-training here
    backbone = resnet_fpn_backbone('resnet50', True, trainable_layers=3)
    if "faster" in finder.params["deep"]["arch"].value:
        from torchvision.models.detection.faster_rcnn import FasterRCNN
        finder.net = FasterRCNN(backbone, num_classes=len(dataset.classes))
    elif "mask" in finder.params["deep"]["arch"].value:
        from torchvision.models.detection.mask_rcnn import MaskRCNN
        finder.net = MaskRCNN(backbone, num_classes=len(dataset.classes))
    # TODO: eventually support keypoint R-CNN if it shows to be promising
    #elif "keypoint" in finder.params["deep"]["arch"].value:
    #    from torchvision.models.detection.keypoint_rcnn import KeypointRCNN
    #    finder.net = KeypointRCNN(backbone, num_classes=len(dataset.classes))
    else:
        raise ValueError(
            f'Invalid choice of architecture: {finder.params["deep"]["arch"].value}'
        )
    finder.net.to(device)

# Train and test the network
for epoch in range(1, hyperparams["epochs"] + 1):
    train(epoch, finder.net, train_loader, device, hyperparams)
    test(epoch, finder.net, test_loader, device, hyperparams)