コード例 #1
0
 def _get_return_nodes(self, model):
     set_rng_seed(0)
     exclude_nodes_filter = [
         "getitem",
         "floordiv",
         "size",
         "chunk",
         "_assert",
         "eq",
         "dim",
         "getattr",
     ]
     train_nodes, eval_nodes = get_graph_node_names(
         model,
         tracer_kwargs={"leaf_modules": self.leaf_modules},
         suppress_diff_warning=True)
     # Get rid of any nodes that don't return tensors as they cause issues
     # when testing backward pass.
     train_nodes = [
         n for n in train_nodes
         if not any(x in n for x in exclude_nodes_filter)
     ]
     eval_nodes = [
         n for n in eval_nodes
         if not any(x in n for x in exclude_nodes_filter)
     ]
     return random.sample(train_nodes, 10), random.sample(eval_nodes, 10)
コード例 #2
0
def _create_fx_model(model, train=False):
    # This block of code does a bit of juggling to handle any case where there are multiple outputs in train mode
    # So we trace once and look at the graph, and get the indices of the nodes that lead into the original fx output
    # node. Then we use those indices to select from train_nodes returned by torchvision get_graph_node_names
    tracer_kwargs = dict(
        leaf_modules=list(_leaf_modules),
        autowrap_functions=list(_autowrap_functions),
        #enable_cpatching=True,
        param_shapes_constant=True)
    train_nodes, eval_nodes = get_graph_node_names(model,
                                                   tracer_kwargs=tracer_kwargs)

    eval_return_nodes = [eval_nodes[-1]]
    train_return_nodes = [train_nodes[-1]]
    if train:
        tracer = NodePathTracer(**tracer_kwargs)
        graph = tracer.trace(model)
        graph_nodes = list(reversed(graph.nodes))
        output_node_names = [
            n.name for n in graph_nodes[0]._input_nodes.keys()
        ]
        graph_node_names = [n.name for n in graph_nodes]
        output_node_indices = [
            -graph_node_names.index(node_name)
            for node_name in output_node_names
        ]
        train_return_nodes = [train_nodes[ix] for ix in output_node_indices]

    fx_model = create_feature_extractor(
        model,
        train_return_nodes=train_return_nodes,
        eval_return_nodes=eval_return_nodes,
        tracer_kwargs=tracer_kwargs,
    )
    return fx_model
コード例 #3
0
 def _get_return_nodes(self, model):
     set_rng_seed(0)
     exclude_nodes_filter = ['getitem', 'floordiv', 'size', 'chunk']
     train_nodes, eval_nodes = get_graph_node_names(
         model,
         tracer_kwargs={'leaf_modules': self.leaf_modules},
         suppress_diff_warning=True)
     # Get rid of any nodes that don't return tensors as they cause issues
     # when testing backward pass.
     train_nodes = [
         n for n in train_nodes
         if not any(x in n for x in exclude_nodes_filter)
     ]
     eval_nodes = [
         n for n in eval_nodes
         if not any(x in n for x in exclude_nodes_filter)
     ]
     return random.sample(train_nodes, 10), random.sample(eval_nodes, 10)
コード例 #4
0
ファイル: distance.py プロジェクト: moskomule/anatome
    def convert_names(model: nn.Module,
                      names: str | list[str],
                      leaf_modules: list[nn.Module],
                      train_mode: bool
                      ) -> list[str]:
        # a helper function
        if isinstance(names, str):
            names = [names]
        tracer_kwargs = {}
        if leaf_modules is not None:
            tracer_kwargs['leaf_modules'] = leaf_modules

        _names = get_graph_node_names(model, tracer_kwargs=tracer_kwargs)
        _names = _names[0] if train_mode else _names[1]
        _names = _names[1:]  # because the first element is input

        if names is None:
            names = _names
        else:
            if not (set(names) <= set(_names)):
                diff = set(names) - set(_names)
                raise RuntimeError(f'Unknown names: {list(diff)}')

        return names
コード例 #5
0
 def test_node_name_conventions(self):
     model = TestModule()
     train_nodes, _ = get_graph_node_names(model)
     assert all(a == b for a, b in zip(train_nodes, test_module_nodes))
コード例 #6
0
    sys.exit(0)
elif not args.models:
    sys.stderr.write("Please specify at least one model to be exported\n")
    sys.exit(-1)

device = 'cuda' if torch.cuda.is_available() and not args.cpu else 'cpu'
logging.info("Device: %s", device)

# An instance of your model.
for mname in args.models:
    if mname not in model_classes:
        logging.warn("model %s is unknown and will not be exported", mname)
        continue

    if args.print_extract:
        train_nodes, eval_nodes = get_graph_node_names(model_classes[mname]())
        print("*** Extractable layers of", mname, "***")
        for node in train_nodes:
            print(node)
        continue

    logging.info("Exporting model %s %s", mname, "(pretrained)" if args.pretrained else "")
    detection = mname in detection_model_classes
    segmentation = mname in segmentation_model_classes
    
    if detection:
        if "fasterrcnn" in mname and version.parse(torchvision.__version__) < version.parse("0.10.0"):
            raise RuntimeError("Fasterrcnn needs torchvision >= 0.10.0 (current = %s)" % torchvision.__version__)

        if mname in ["fasterrcnn", "retinanet"]:
            if args.backbone and args.backbone in model_classes: