コード例 #1
0
def build_dataset(config):
    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])

    img_size = config['image_size']
    train_transforms = transforms.Compose([
        transforms.RandomResizedCrop(size=img_size, scale=(0.24, 0.25)),
        transforms.ColorJitter(brightness=0.2,
                               contrast=0.2,
                               saturation=0.2,
                               hue=0.05),
        transforms.RandomHorizontalFlip()
    ])

    val_transforms = transforms.Compose(
        [transforms.RandomResizedCrop(size=img_size, scale=(0.24, 0.25))])

    dsTrain = LasinkSimulation('data/nvidia_v2/train/', train_transforms)
    dsVal = LasinkSimulation('data/nvidia_v2/test/', val_transforms)

    train_loader = DataLoader(dsTrain,
                              batch_size=config['batch_size'],
                              shuffle=True,
                              drop_last=True)
    val_loader = DataLoader(dsVal,
                            batch_size=config['batch_size'],
                            shuffle=True)

    return train_loader, val_loader
コード例 #2
0
def get_simclr_data_transforms_train(dataset_name):
    if dataset_name == "stl10":
        input_shape = (96, 96, 3)
        s = 1
        # get a set of data augmentation transformations as described in the SimCLR paper.
        color_jitter = transforms.ColorJitter(0.8 * s, 0.8 * s, 0.8 * s,
                                              0.2 * s)
        return transforms.Compose([
            transforms.RandomResizedCrop(size=input_shape[0]),
            transforms.RandomHorizontalFlip(),
            transforms.RandomApply([color_jitter], p=0.8),
            transforms.RandomGrayscale(p=0.2),
            GaussianBlur(kernel_size=int(0.1 * input_shape[0])),
            transforms.ToTensor()
        ])

    elif dataset_name == "cifar10":
        return transforms.Compose([
            transforms.RandomResizedCrop(32),
            transforms.RandomHorizontalFlip(p=0.5),
            transforms.RandomApply(
                [transforms.ColorJitter(0.4, 0.4, 0.4, 0.1)], p=0.8),
            transforms.RandomGrayscale(p=0.2),
            transforms.ToTensor(),
            transforms.Normalize([0.4914, 0.4822, 0.4465],
                                 [0.2023, 0.1994, 0.2010])
        ])
    else:
        raise RuntimeError(f"unknown dataset: {dataset_name}")
コード例 #3
0
 def __init__(self):
     self.transform = transforms.Compose([
         transforms.RandomResizedCrop(224, interpolation=Image.BICUBIC),
         transforms.RandomHorizontalFlip(p=0.5),
         transforms.RandomApply([
             transforms.ColorJitter(
                 brightness=0.4, contrast=0.4, saturation=0.2, hue=0.1)
         ],
                                p=0.8),
         transforms.RandomGrayscale(p=0.2),
         GaussianBlur(p=1.0),
         Solarization(p=0.0),
         transforms.ToTensor(),
         transforms.Normalize(mean=[0.485, 0.456, 0.406],
                              std=[0.229, 0.224, 0.225])
     ])
     self.transform_prime = transforms.Compose([
         transforms.RandomResizedCrop(224, interpolation=Image.BICUBIC),
         transforms.RandomHorizontalFlip(p=0.5),
         transforms.RandomApply([
             transforms.ColorJitter(
                 brightness=0.4, contrast=0.4, saturation=0.2, hue=0.1)
         ],
                                p=0.8),
         transforms.RandomGrayscale(p=0.2),
         GaussianBlur(p=0.1),
         Solarization(p=0.2),
         transforms.ToTensor(),
         transforms.Normalize(mean=[0.485, 0.456, 0.406],
                              std=[0.229, 0.224, 0.225])
     ])
コード例 #4
0
 def get_simclr_pipeline_transform(size, s=1, num_aug=5):
     """Return a set of data augmentation transformations as described in the SimCLR paper."""
     color_jitter = transforms.ColorJitter(0.8 * s, 0.8 * s, 0.8 * s,
                                           0.2 * s)
     if num_aug == 5:
         data_transforms = transforms.Compose([
             transforms.RandomResizedCrop(size=size),
             transforms.RandomHorizontalFlip(),
             transforms.RandomApply([color_jitter], p=0.8),
             transforms.RandomGrayscale(p=0.2),
             GaussianBlur(kernel_size=int(0.1 * size)),
             transforms.ToTensor()
         ])
     elif num_aug == 7:
         data_transforms = transforms.Compose([
             transforms.RandomResizedCrop(size=size),
             transforms.RandomHorizontalFlip(),
             transforms.RandomApply([color_jitter], p=0.8),
             transforms.RandomGrayscale(p=0.2),
             GaussianBlur(kernel_size=int(0.1 * size)),
             transforms.RandomRotation(degrees=45),
             transforms.RandomAffine(degrees=45),
             transforms.ToTensor()
         ])
     return data_transforms
コード例 #5
0
    def __load_the_data(train_dir, test_dir, batch_size, data_augmentation):
        # Assign transform values with respect to the data augmentation strategy
        if data_augmentation:
            # Set normalization metrics for the data loaders
            normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                             std=[0.229, 0.224, 0.225])

            train_transform_list = [
                transforms.RandomHorizontalFlip(),
                transforms.RandomResizedCrop(224),
                transforms.ToTensor(),
                normalize,
            ]

            test_transform_list = [
                transforms.Resize(256),
                transforms.CenterCrop(224),
                transforms.ToTensor(),
                normalize,
            ]
        else:
            # Set normalization metrics for the data loaders
            normalize = transforms.Normalize(mean=[0.5, 0.5, 0.5],
                                             std=[0.5, 0.5, 0.5])

            train_transform_list = [
                transforms.RandomResizedCrop(224),
                transforms.ToTensor(),
                normalize,
            ]

            test_transform_list = [
                transforms.CenterCrop(224),
                transforms.ToTensor(),
                normalize,
            ]

        # Load the train directory and shuffle the images
        train_loader = torch.utils.data.DataLoader(
            datasets.ImageFolder(train_dir,
                                 transforms.Compose(train_transform_list)),
            batch_size=batch_size,
            shuffle=True,
        )

        # Load the test directory
        test_loader = torch.utils.data.DataLoader(
            datasets.ImageFolder(test_dir,
                                 transforms.Compose(test_transform_list)),
            batch_size=batch_size,
        )

        return train_loader, test_loader
コード例 #6
0
def build_dataset(config):
    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])

    size = config['image_size']
    train_transforms = transforms.Compose([
          transforms.RandomResizedCrop(size=size, scale=(0.8, 1.0)),
          transforms.RandomRotation(degrees=5),
          transforms.ColorJitter(brightness=0.3, contrast=0.3, saturation=0.1),
          transforms.RandomHorizontalFlip(),
          transforms.ToTensor(),
          normalize
      ])

    val_transforms = transforms.Compose([
        transforms.Resize(size=(size, size)),
        transforms.ToTensor(),
        normalize
    ])

    dsTrain = ImageFolder('data/train/', train_transforms, target_transform=target_transform)
    dsVal = ImageFolder('data/test/', val_transforms, target_transform=target_transform)
    #dsTest = ImageFolder('data/WildFire/test/', val_transforms, target_transform=target_transform)
   
    train_loader = DataLoader(dsTrain, batch_size=config['batch_size'], shuffle=True)
    val_loader = DataLoader(dsVal, batch_size=config['batch_size'], shuffle=True)
    #test_loader = DataLoader(dsTest, batch_size=config['batch_size'], shuffle=True)

    return train_loader, val_loader
コード例 #7
0
def prepare_data_loaders(data_path):

    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])
    dataset = torchvision.datasets.ImageNet(
        data_path,
        split="train",
        transform=transforms.Compose([
            transforms.RandomResizedCrop(224),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(), normalize
        ]))
    dataset_test = torchvision.datasets.ImageNet(
        data_path,
        split="val",
        transform=transforms.Compose([
            transforms.Resize(256),
            transforms.CenterCrop(224),
            transforms.ToTensor(), normalize
        ]))

    train_sampler = torch.utils.data.RandomSampler(dataset)
    test_sampler = torch.utils.data.SequentialSampler(dataset_test)

    data_loader = torch.utils.data.DataLoader(dataset,
                                              batch_size=train_batch_size,
                                              sampler=train_sampler)

    data_loader_test = torch.utils.data.DataLoader(dataset_test,
                                                   batch_size=eval_batch_size,
                                                   sampler=test_sampler)

    return data_loader, data_loader_test
コード例 #8
0
    def __init__(
        self,
        crop_size,
        mean=(0.485, 0.456, 0.406),
        std=(0.229, 0.224, 0.225),
        interpolation=InterpolationMode.BILINEAR,
        hflip_prob=0.5,
        auto_augment_policy=None,
        random_erase_prob=0.0,
    ):
        trans = [transforms.RandomResizedCrop(crop_size, interpolation=interpolation)]
        if hflip_prob > 0:
            trans.append(transforms.RandomHorizontalFlip(hflip_prob))
        if auto_augment_policy is not None:
            if auto_augment_policy == "ra":
                trans.append(autoaugment.RandAugment(interpolation=interpolation))
            elif auto_augment_policy == "ta_wide":
                trans.append(autoaugment.TrivialAugmentWide(interpolation=interpolation))
            else:
                aa_policy = autoaugment.AutoAugmentPolicy(auto_augment_policy)
                trans.append(autoaugment.AutoAugment(policy=aa_policy, interpolation=interpolation))
        trans.extend(
            [
                transforms.PILToTensor(),
                transforms.ConvertImageDtype(torch.float),
                transforms.Normalize(mean=mean, std=std),
            ]
        )
        if random_erase_prob > 0:
            trans.append(transforms.RandomErasing(p=random_erase_prob))

        self.transforms = transforms.Compose(trans)
コード例 #9
0
def inception_preproccess(input_size, normalize=__imagenet_stats):
    return transforms.Compose([
        transforms.RandomResizedCrop(input_size),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize(**normalize)
    ])
コード例 #10
0
    def __init__(self, data_folder="./data", cudaready=False):
        self.cuda = cudaready
        self.cnn_model = FlowerClassifierCNNModel()

        if (self.cuda):
            self.cnn_model.cuda()

        self.optimizer = Adam(self.cnn_model.parameters())
        if (self.cuda):
            self.loss_fn = nn.CrossEntropyLoss().cuda()
        else:
            self.loss_fn = nn.CrossEntropyLoss()

        # load data
        self.transformations = transforms.Compose([
            transforms.RandomResizedCrop(64),
            transforms.ToTensor(),
            transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
        ])

        total_dataset = datasets.ImageFolder(data_folder,
                                             transform=self.transformations)
        dataset_loader = DataLoader(dataset=total_dataset, batch_size=100)
        items = iter(dataset_loader)
        image, label = items.next()
        print(len(total_dataset))
        train_size = int(0.8 * len(total_dataset))
        test_size = len(total_dataset) - train_size
        train_dataset, test_dataset = random_split(total_dataset,
                                                   [train_size, test_size])

        self.train_dataset_loader = DataLoader(dataset=train_dataset,
                                               batch_size=100)
        self.test_dataset_loader = DataLoader(dataset=test_dataset,
                                              batch_size=100)
コード例 #11
0
def load_hymenoptera():
    data_dir = 'data/hymenoptera_data'
    train_transform = transforms.Compose([
        transforms.RandomResizedCrop(224),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ])
    data_transforms = {
        'train':
        train_transform,
        'val':
        transforms.Compose([
            transforms.Resize(256),
            transforms.CenterCrop(224),
            transforms.ToTensor(),
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
        ]),
    }

    image_datasets = {
        x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x])
        for x in ['train', 'val']
    }

    dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
    class_names = image_datasets['train'].classes
    dataloaders = {
        x: torch.utils.data.DataLoader(image_datasets[x],
                                       batch_size=4,
                                       shuffle=True,
                                       num_workers=4)
        for x in ['train', 'val']
    }
    return dataloaders['train'], dataloaders['val'], class_names
コード例 #12
0
def woof_preproccess(input_size, normalize=__imagenet_stats):
    return transforms.Compose([
        transforms.RandomResizedCrop(input_size, scale=(0.35, 1.)),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize(**normalize)
    ])
コード例 #13
0
def get_dataloader(data_root_dir):
    data_transforms = {
        'train':
        transforms.Compose([
            transforms.RandomResizedCrop(IMAGE_SIZE),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
        ]),
        'val':
        transforms.Compose([
            transforms.Resize(256),
            transforms.CenterCrop(IMAGE_SIZE),
            transforms.ToTensor(),
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
        ]),
    }
    image_datasets = {
        x: datasets.ImageFolder(os.path.join(data_root_dir, x),
                                data_transforms[x])
        for x in ['train', 'val']
    }

    dataloaders = {
        x: torch.utils.data.DataLoader(image_datasets[x],
                                       batch_size=BATCH_SIZE,
                                       shuffle=True,
                                       num_workers=4)
        for x in ['train', 'val']
    }

    return dataloaders, image_datasets, image_datasets['train'].classes
コード例 #14
0
def produce_benchmark_datatsets(root = '../data', num = 30):

    transform_b = transforms.Compose(
        [transforms.RandomResizedCrop(224),
         transforms.RandomHorizontalFlip()],)
    data_dir = '../data/hymenoptera_data/'

    dataset = ImageFolder(os.path.join(data_dir, 'val'), transform_b)
    benchmark_datasets_dir = os.path.join(root, 'ant_benchmark_data')

    label_dic = {}
    if os.path.exists(benchmark_datasets_dir) is False:
        os.mkdir(benchmark_datasets_dir)
    for i in range(num):
        print('saving image {}'.format(i))
        img = transform_b(dataset[i+60][0])
        label = dataset[i+60][1]
        print(label)
        label_dic[i] = label
        img.save(os.path.join(benchmark_datasets_dir, '{}.png'.format(i)))

    label_file = os.path.join(benchmark_datasets_dir, 'label.json')
    with open(label_file, 'a') as f:
        json.dump(label_dic, f)
    '''
コード例 #15
0
 def train_dataloader(self):
     _train_transforms = None
     if self.hparams.augment:
         _train_transforms = transforms.Compose([
             transforms.RandomResizedCrop(size=(36, 60), scale=(0.5, 1.3)),
             transforms.RandomGrayscale(p=0.1),
             transforms.ColorJitter(brightness=0.5,
                                    hue=0.2,
                                    contrast=0.5,
                                    saturation=0.5), lambda x: x
             if np.random.random_sample() <= 0.1 else x.filter(
                 ImageFilter.GaussianBlur(radius=3)),
             transforms.ToTensor(),
             transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                  std=[0.229, 0.224, 0.225])
         ])
     _data_train = RTGENEH5Dataset(h5_file=h5py.File(self.hparams.hdf5_file,
                                                     mode="r"),
                                   subject_list=self._train_subjects,
                                   transform=_train_transforms)
     return DataLoader(_data_train,
                       batch_size=self.hparams.batch_size,
                       shuffle=True,
                       num_workers=self.hparams.num_io_workers,
                       pin_memory=False)
コード例 #16
0
    def handle(self, source, copy_to_local=False, normalize=True,
               split=None, classification_mode=False, **transform_args):
        """

        Args:
            source:
            copy_to_local:
            normalize:
            **transform_args:

        Returns:

        """
        Dataset = self.make_indexing(CelebA)
        data_path = self.get_path(source)

        if copy_to_local:
            data_path = self.copy_to_local_path(data_path)

        if normalize and isinstance(normalize, bool):
            normalize = [(0.5, 0.5, 0.5), (0.5, 0.5, 0.5)]

        if classification_mode:
            train_transform = transforms.Compose([
                transforms.RandomResizedCrop(64),
                transforms.RandomHorizontalFlip(),
                transforms.ToTensor(),
                transforms.Normalize(*normalize),
            ])
            test_transform = transforms.Compose([
                transforms.Resize(64),
                transforms.CenterCrop(64),
                transforms.ToTensor(),
                transforms.Normalize(*normalize),
            ])
        else:
            train_transform = build_transforms(normalize=normalize,
                                               **transform_args)
            test_transform = train_transform

        if split is None:
            train_set = Dataset(root=data_path, transform=train_transform,
                                download=True)
            test_set = Dataset(root=data_path, transform=test_transform)
        else:
            train_set, test_set = self.make_split(
                data_path, split, Dataset, train_transform, test_transform)
        input_names = ['images', 'labels', 'attributes']

        dim_c, dim_x, dim_y = train_set[0][0].size()
        dim_l = len(train_set.classes)
        dim_a = train_set.attributes[0].shape[0]

        dims = dict(x=dim_x, y=dim_y, c=dim_c, labels=dim_l, attributes=dim_a)
        self.add_dataset('train', train_set)
        self.add_dataset('test', test_set)
        self.set_input_names(input_names)
        self.set_dims(**dims)

        self.set_scale((-1, 1))
コード例 #17
0
    def train_dataloader(self):
        _train_transforms: None = None

        if self.hparams.augment:
            _train_transforms = transforms.Compose([
                transforms.RandomResizedCrop(size=(224, 224),
                                             scale=(0.85, 1.0)),
                transforms.RandomGrayscale(p=0.08),
                # lambda x: x if np.random.random_sample() > 0.08 else x.filter(ImageFilter.GaussianBlur(radius=1)),
                # lambda x: x if np.random.random_sample() > 0.08 else x.filter(ImageFilter.GaussianBlur(radius=3)),
                self.gaussianBlur1,
                self.gaussianBlur3,
                transforms.Resize((224, 224), Image.BICUBIC),
                transforms.ToTensor(),
                transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])
            ])
        _data_train = RTGENEH5Dataset(h5_file=h5pickle.File(
            self.hparams.hdf5_file, mode="r"),
                                      subject_list=self._train_subjects,
                                      transform=_train_transforms)
        return DataLoader(_data_train,
                          batch_size=self.hparams.batch_size,
                          shuffle=True,
                          num_workers=self.hparams.num_io_workers,
                          pin_memory=False)
コード例 #18
0
 def __init__(self, factor, size):
     self.factor = factor 
     rc_scale = (2 - factor[1], 1)
     self.size   = (size, size)
     self.rc_scale = rc_scale
     self.ratio = (3. / 4., 4. / 3.) 
     self.resize_crop = transforms.RandomResizedCrop(size, rc_scale)
コード例 #19
0
ファイル: train.py プロジェクト: waghostel/Holocron
def load_data(traindir, valdir, img_size=224, crop_pct=0.875):
    # Data loading code
    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])

    scale_size = min(int(math.floor(img_size / crop_pct)), 320)

    print("Loading training data")
    st = time.time()
    train_set = ImageFolder(
        traindir,
        transforms.Compose([
            transforms.RandomResizedCrop(img_size, scale=(0.3, 1.0)),
            transforms.RandomHorizontalFlip(),
            transforms.ColorJitter(brightness=0.3,
                                   contrast=0.3,
                                   saturation=0.1,
                                   hue=0.02),
            transforms.ToTensor(), normalize,
            transforms.RandomErasing(p=0.9, value='random')
        ]))
    print("Took", time.time() - st)

    print("Loading validation data")
    eval_tf = []
    if scale_size < 320:
        eval_tf.append(transforms.Resize(scale_size))
    eval_tf.extend(
        [transforms.CenterCrop(img_size),
         transforms.ToTensor(), normalize])
    val_set = ImageFolder(valdir, transforms.Compose(eval_tf))

    return train_set, val_set
コード例 #20
0
    def __init__(self, split: str = "train", resize_s=256, size=10e9):
        """
        :type resize_s: int or tuple(w,h)
        :param dataset_path: dataset directory
        :param split: train, valid, test"""

        t = []

        if split == "train":
            t.extend([
                transforms.RandomResizedCrop(resize_s),
                transforms.RandomHorizontalFlip(),
            ])
        else:
            t.extend(
                [transforms.Resize(resize_s),
                 transforms.CenterCrop(resize_s)])

        t.extend([
            transforms.ToTensor()
            # transforms.Normalize(self.mean, self.std)
        ])

        self.trans = transforms.Compose(t)
        self.env = connect_dict()
        self.env_iter = iter(connect_dict())
        self.size = size
コード例 #21
0
ファイル: train_model.py プロジェクト: Tobias-Fischer/rt_gene
    def train_dataloader(self):
        train_transforms = transforms.Compose([
            transforms.RandomResizedCrop(size=(36, 60), scale=(0.5, 1.3)),
            transforms.RandomPerspective(distortion_scale=0.2),
            transforms.RandomGrayscale(p=0.1),
            transforms.ColorJitter(brightness=0.5,
                                   hue=0.2,
                                   contrast=0.5,
                                   saturation=0.5), lambda x: x
            if np.random.random_sample() <= 0.1 else x.filter(
                ImageFilter.GaussianBlur(radius=2)),
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                 std=[0.229, 0.224, 0.225])
        ])

        data_train = RTBENEH5Dataset(h5_pth=self.hparams.dataset,
                                     subject_list=self._train_subjects,
                                     transform=train_transforms,
                                     loader_desc="train")
        return DataLoader(data_train,
                          batch_size=self.hparams.batch_size,
                          shuffle=True,
                          num_workers=self.hparams.num_io_workers,
                          pin_memory=True)
コード例 #22
0
    def get_transforms(self)->tuple:
        # MEAN, STD computed for sport8
        MEAN = [0.4734, 0.4856, 0.4526]
        STD = [0.2478, 0.2444, 0.2667]

        # transformations match that in
        # https://github.com/antoyang/NAS-Benchmark/blob/master/DARTS/preproc.py
        train_transf = [
            transforms.RandomResizedCrop(224),
            transforms.RandomHorizontalFlip(),
            transforms.ColorJitter(
                brightness=0.4,
                contrast=0.4,
                saturation=0.4,
                hue=0.2)
        ]

        test_transf = [transforms.Resize(256), transforms.CenterCrop(224)]

        normalize = [
            transforms.ToTensor(),
            transforms.Normalize(MEAN, STD)
        ]

        train_transform = transforms.Compose(train_transf + normalize)
        test_transform = transforms.Compose(test_transf + normalize)

        return train_transform, test_transform
コード例 #23
0
    def __init__(self,
                 crop_size,
                 mean=(0.485, 0.456, 0.406),
                 std=(0.229, 0.224, 0.225),
                 hflip_prob=0.5,
                 auto_augment_policy=None,
                 random_erase_prob=0.0):
        trans = [transforms.RandomResizedCrop(crop_size)]
        if hflip_prob > 0:
            trans.append(transforms.RandomHorizontalFlip(hflip_prob))
        if auto_augment_policy is not None:
            if auto_augment_policy == "ra":
                trans.append(autoaugment.RandAugment())
            elif auto_augment_policy == "ta_wide":
                trans.append(autoaugment.TrivialAugmentWide())
            else:
                aa_policy = autoaugment.AutoAugmentPolicy(auto_augment_policy)
                trans.append(autoaugment.AutoAugment(policy=aa_policy))
        trans.extend([
            transforms.ToTensor(),
            transforms.Normalize(mean=mean, std=std),
        ])
        if random_erase_prob > 0:
            trans.append(transforms.RandomErasing(p=random_erase_prob))

        self.transforms = transforms.Compose(trans)
コード例 #24
0
 def __init__(self):
     self.transform = transforms.Compose([
         transforms.RandomResizedCrop(64),
         transforms.RandomHorizontalFlip(),
         transforms.ToTensor(),
         transforms.Normalize(mean=[0.485, 0.456, 0.406],
                              std=[0.229, 0.224, 0.225])
     ])
コード例 #25
0
    def _handle_STL(self,
                    Dataset,
                    data_path,
                    transform=None,
                    labeled_only=False,
                    stl_center_crop=False,
                    stl_resize_only=False,
                    stl_no_resize=False):
        normalize = transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))

        if stl_no_resize:
            train_transform = transforms.Compose([
                transforms.RandomHorizontalFlip(),
                transforms.ToTensor(),
                normalize,
            ])
            test_transform = transforms.Compose([
                transforms.ToTensor(),
                normalize,
            ])
        else:
            if stl_center_crop:
                tr_trans = transforms.CenterCrop(64)
                te_trans = transforms.CenterCrop(64)
            elif stl_resize_only:
                tr_trans = transforms.Resize(64)
                te_trans = transforms.Resize(64)
            elif stl_no_resize:
                pass
            else:
                tr_trans = transforms.RandomResizedCrop(64)
                te_trans = transforms.Resize(64)

            train_transform = transforms.Compose([
                tr_trans,
                transforms.RandomHorizontalFlip(),
                transforms.ToTensor(),
                normalize,
            ])
            test_transform = transforms.Compose([
                te_trans,
                transforms.ToTensor(),
                normalize,
            ])
        if labeled_only:
            split = 'train'
        else:
            split = 'train+unlabeled'
        train_set = Dataset(data_path,
                            split=split,
                            transform=train_transform,
                            download=True)
        test_set = Dataset(data_path,
                           split='test',
                           transform=test_transform,
                           download=True)
        return train_set, test_set
コード例 #26
0
ファイル: data_provider.py プロジェクト: Chacrk/MSML_Project
    def build_file_list(self, csv_path_1, csv_path_2):
        if self.dataset_type == 'train':
            with open(csv_path_1) as csv_train:
                csv_reader = csv.reader(csv_train)
                for index, row_item in enumerate(csv_reader):
                    if index == 0:
                        continue
                    self.image_name_list_base.append(row_item[0])
                    self.index_list_base.append(index - 1)

            last_index = self.index_list_base[-1]
            with open(csv_path_2) as csv_val:
                csv_reader = csv.reader(csv_val)
                for index, row_item in enumerate(csv_reader):
                    if index == 0:
                        continue
                    self.image_name_list_base.append(row_item[0])
                    self.index_list_base.append(last_index + index - 1)
        else:
            with open(csv_path_1) as csv_test:
                csv_reader = csv.reader(csv_test)
                for index, row_item in enumerate(csv_reader):
                    if index == 0:
                        continue
                    self.image_name_list_base.append(row_item[0])
                    self.index_list_base.append(index - 1)

        self.label_list_base = [
            i for i in range(self.num_classes) for _ in range(600)
        ]
        random.shuffle(self.index_list_base)
        self.image_name_list = [
            self.image_name_list_base[i] for i in self.index_list_base
        ]
        self.label_list = [
            self.label_list_base[i] for i in self.index_list_base
        ]

        self.mean = np.array([x / 255.0 for x in [125.3, 123.0, 113.9]])
        self.std = np.array([x / 255.0 for x in [63.0, 62.1, 66.7]])

        if self.data_aug is True:
            self.transform = transforms.Compose([
                transforms.Resize(92),
                transforms.RandomResizedCrop(88),
                transforms.CenterCrop(self.img_size),
                transforms.RandomHorizontalFlip(),
                transforms.ToTensor(),
                transforms.Normalize(self.mean, self.std)
            ])
        else:
            self.transform = transforms.Compose([
                transforms.Resize(92),
                transforms.CenterCrop(self.img_size),
                transforms.ToTensor(),
                transforms.Normalize(self.mean, self.std)
            ])
コード例 #27
0
def get_training_transform():
    return transforms.Compose([
        transforms.RandomResizedCrop(vgg_utils.image_size),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize(mean=vgg_utils.normalization_means,
                             std=vgg_utils.normalization_stds)

    ])
コード例 #28
0
    def __init__(self):
        ##The top config
        #self.data_root = '/media/hhy/data/USdata/MergePhase1/test_0.3'
        #self.log_dir = '/media/hhy/data/code_results/MILs/MIL_H_Attention'

        self.root = '/remote-home/my/Ultrasound_CV/data/Ruijin/clean'
        self.log_dir = '/remote-home/my/hhy/Ultrasound_MIL/experiments/weighted_sampler/'
        if not os.path.exists(self.log_dir):
            os.makedirs(self.log_dir)
        ##training config
        self.lr = 1e-4
        self.epoch = 50
        self.resume = -1
        self.batch_size = 1
        self.net = Attention()
        self.net.cuda()

        self.optimizer = Adam(self.net.parameters(), lr=self.lr)
        self.lrsch = torch.optim.lr_scheduler.MultiStepLR(self.optimizer, milestones=[10, 30, 50, 70], gamma=0.5)

        
        self.logger = Logger(self.log_dir)
        self.train_transform =  transforms.Compose([
                transforms.Resize((224,224)),
                transforms.RandomResizedCrop((224,224)),
                transforms.RandomHorizontalFlip(0.5),
                transforms.RandomVerticalFlip(0.5),
                transforms.ColorJitter(0.25,0.25,0.25,0.25),
                transforms.ToTensor()
    ])
        self.test_transform = transforms.Compose([
                    transforms.Resize((224,224)),
                    transforms.ToTensor()
        ])

        self.trainbag = RuijinBags(self.root, [0,1,2,3],self.train_transform)
        self.testbag = RuijinBags(self.root, [4], self.test_transform)
        
        train_label_list = list(map(lambda x: int(x['label']), self.trainbag.patient_info))
        pos_ratio = sum(train_label_list) / len(train_label_list)
        print(pos_ratio)
        train_weight = [(1-pos_ratio) if x>0 else pos_ratio for x in train_label_list]

        self.train_sampler = WeightedRandomSampler(weights=train_weight, num_samples=len(self.trainbag))
        self.train_loader = DataLoader(self.trainbag, batch_size=self.batch_size, num_workers=8,
                            sampler=self.train_sampler)
        self.val_loader = DataLoader(self.testbag, batch_size=self.batch_size, shuffle=False, num_workers=8)

        if self.resume > 0:
            self.net, self.optimizer, self.lrsch, self.loss, self.global_step = self.logger.load(self.net, self.optimizer, self.lrsch, self.loss, self.resume)
        else:
            self.global_step = 0
        
        # self.trainer = MTTrainer(self.net, self.optimizer, self.lrsch, self.loss, self.train_loader, self.val_loader, self.logger, self.global_step, mode=2)
        self.trainer = MILTrainer_batch1(self.net, self.optimizer, self.lrsch, None, self.train_loader, self.val_loader, self.logger,
                                     self.global_step)
コード例 #29
0
def get_simclr_data_transforms2(input_shape, s=1., blur=0.1):
    # get a set of data augmentation transformations as described in the SimCLR paper.
    color_jitter = transforms.ColorJitter(0.8 * s, 0.8 * s, 0.8 * s, 0.2 * s)
    data_transforms = transforms.Compose([
        transforms.RandomResizedCrop(size=eval(input_shape)[0]),
        transforms.RandomHorizontalFlip(),
        transforms.RandomApply([color_jitter], p=0.5),
        transforms.ToTensor()
    ])
    return data_transforms
コード例 #30
0
ファイル: BYOL.py プロジェクト: reshinthadithyan/BYOL-Pytorch
def Transforms(Input_Dim, S=1):
    Color_Jitter = transforms.ColorJitter(0.8 * S, 0.8 * S, 0.8 * S, 0.2 * S)
    Data_Transforms = transforms.Compose([
        transforms.RandomResizedCrop(size=Input_Dim[0]),
        transforms.RandomHorizontalFlip(),
        transforms.RandomApply([Color_Jitter], p=0.75),
        transforms.RandomGrayscale(p=0.2),
        GaussianBlur(int(0.1 * Input_Dim[0])),
        transforms.ToTensor(),
    ])
    return Data_Transforms