def _add_random_erasing(self): transform = transforms.random_erasing( self.config['random_erasing_prob'], self.config['random_erasing_area_ratio_range'], self.config['random_erasing_min_aspect_ratio'], self.config['random_erasing_max_attempt']) self._train_transforms.append(transform)
def _get_random_erasing_train_transform(self): transform = torchvision.transforms.Compose([ transforms.normalize(self.mean, self.std), transforms.random_erasing( self.config['random_erasing_prob'], self.config['random_erasing_area_ratio_range'], self.config['random_erasing_min_aspect_ratio'], self.config['random_erasing_max_attempt']), transforms.to_tensor(), ]) return transform
def _get_random_erasing_train_transform(self): transform = torchvision.transforms.Compose([ torchvision.transforms.Resize((32,32)), torchvision.transforms.ColorJitter(0.1,0.1,0.1), # torchvision.transforms.RandomRotation(15), # RandomAffine(degrees=15,scale=(0.8,1.2),shear=15), torchvision.transforms.RandomCrop(32, padding=4), torchvision.transforms.RandomHorizontalFlip(), transforms.normalize(self.mean, self.std), transforms.random_erasing( self.config['random_erasing_prob'], self.config['random_erasing_area_ratio_range'], self.config['random_erasing_min_aspect_ratio'], self.config['random_erasing_max_attempt']), transforms.to_tensor(), ]) return transform