def __init__(self, reduction: Optional[Union[nn.Module, str]] = 'sum'): """ Initialize BayesianPersonalizedRankingLoss Args: reduction Union[nn.Module, str], optional): reduction method to calculate loss. Defaults to sum """ super().__init__() self.reduction = get_reduction(reduction)
def __init__(self, margin: float = 1.0, reduction: Optional[nn.Module] = torch.sum): """ Initialize HingeLoss Args: margin (float, optional): Margin size of loss. Defaults to 1.0 reduction (nn.Module, optional): Reduction method to calculate loss. Defaults to sum """ super().__init__() self.margin = margin self.reduction = get_reduction(reduction)
def __init__(self, reduction: Union[Callable[[torch.Tensor], torch.Tensor], str] = "sum"): r"""Initialize BayesianPersonalizedRankingLoss Args: reduction Union[Callable[T, T], str], optional): reduction method to calculate loss. Defaults to torch.sum. Attributes: reduction (Union[Callable[T, T], str]): reduction method to calculate loss. """ # Refer to parent class super(BayesianPersonalizedRankingLoss, self).__init__() # Bind reduction to reduction self.reduction = get_reduction(reduction)
def __init__(self, margin: float = 1.0, reduction: Callable[[torch.Tensor], torch.Tensor] = torch.sum): r"""Initialize HingeLoss Args: margin (float, optional): Margin size of loss. Defaults to 1.0. reduction (Callable[T, T], optional): Reduction method to calculate loss. Defaults to torch.sum. Attributes: margin (float): Margin size of loss. reduction (Callable[T, T]): Reduction method to calculate loss. """ # Refer to parent class super(HingeLoss, self).__init__() # Bind margin and reduction to margin and reduction self.margin = margin self.reduction = get_reduction(reduction)