コード例 #1
0
    def draw_cov(self, axes=None):

        # get results
        cov = self.results.cov
        tre = toytree.tree(self.results.tree)

        # names spaced in order
        lnames = toyplot.locator.Explicit(
            locations=range(len(tre.get_tip_labels())),
            labels=tre.get_tip_labels()[::-1],
        )

        # get a colormap and plot the matrix
        cmap = toyplot.color.diverging.map(
            "BlueRed", 
            cov.min(),
            cov.max(),
        )

        canvas, table = toyplot.matrix(
            (cov, cmap),
            width=400, 
            height=400, 
            bshow=True,
            tshow=False,
            lshow=False,
            rlocator=lnames,
            blocator=lnames,      
        )
        return canvas, table
コード例 #2
0
ファイル: tmat-toyplot.py プロジェクト: yyan162/tribeflow
def main(model):
    store = pd.HDFStore(model)
    
    from_ = store['from_'][0][0]
    to = store['to'][0][0]
    assert from_ == 0
    
    trace_fpath = store['trace_fpath'][0][0]
    Theta_zh = store['Theta_zh'].values
    Psi_oz = store['Psi_sz'].values
    count_z = store['count_z'].values[:, 0]

    Psi_oz = Psi_oz / Psi_oz.sum(axis=0)
    Psi_zo = (Psi_oz * count_z).T
    Psi_zo = Psi_zo / Psi_zo.sum(axis=0)
    obj2id = dict(store['source2id'].values)
    hyper2id = dict(store['hyper2id'].values)
    id2obj = dict((v, k) for k, v in obj2id.items())

    ZtZ = Psi_zo.dot(Psi_oz)
    ZtZ = ZtZ / ZtZ.sum(axis=0)
    L = ZtZ
    #ZtZ[ZtZ < (ZtZ.mean())] = 0
    L[ZtZ >= 1.0 / (len(ZtZ))] = 1
    L[L != 1] = 0

    colormap = toyplot.color.brewer.map("Purples", domain_min=0, domain_max=1, reverse=True)
    print(colormap)
    canvas = toyplot.matrix((L.T, colormap), label="P[z' | z]", \
            colorshow=False, tlabel="To z'", llabel="From")[0]
    #canvas.axes(ylabel='From z', xlabel='To z\'')
    toyplot.pdf.render(canvas, 'tmat.pdf')

    model = SpectralCoclustering(n_clusters=3)
    model.fit(L)
    fit_data = L[np.argsort(model.row_labels_)]
    fit_data = fit_data[:, np.argsort(model.column_labels_)]
    canvas = toyplot.matrix((fit_data, colormap), label="P[z' | z']", \
            colorshow=False)[0]
    toyplot.pdf.render(canvas, 'tmat-cluster.pdf')
    
    #AtA = Psi_oz.dot(Psi_zo)
    #np.fill_diagonal(AtA, 0)
    #AtA = AtA / AtA.sum(axis=0)

    store.close()