コード例 #1
0
ファイル: yun.v0.2.py プロジェクト: qq734628996/music_dl
def playlist_dl(playlist_id):
    data=get_playlist(playlist_id)
    print('Start Dowdloading {0}.'.format(data['name']))
    path=create_dir(data)
    write_info_json(path,data)
    songs=get_songs_info(path,data)
    global ID_WIDTH
    ID_WIDTH=len(str(len(songs)))
    print('Dowdloading songs...')
    tqdm.get_lock()
    with tqdm(total=len(songs),ncols=70) as pbar:
        pool=ThreadPoolExecutor(max_workers=MAX_POOL)
        tasks=[pool.submit(download_song,path,i+1,song) for i,song in enumerate(songs)]
        for _ in as_completed(tasks):
            pbar.update()
コード例 #2
0
def outer_function(**config):
    """Outer function running inner function for each task in input dict"""
    freeze_support()  # for Windows support
    tqdm.set_lock(RLock())

    with concurrent.futures.ThreadPoolExecutor(initializer=tqdm.set_lock,
                                               initargs=(tqdm.get_lock(), ),
                                               max_workers=3) as executor:
        results_list = []
        outer_loop_kwarg = {
            'total': len(config['package']['tasks']),
            'desc': 'Outer',
            'ascii': True,
            'position': len(config['package']['tasks']),
            'leave': True
        }

        with tqdm(**outer_loop_kwarg) as out_progress:
            futuresListComp = [
                executor.submit(inner_function, **node)
                for node in config['package']['tasks']
            ]

            # Update after each completed task
            for future in concurrent.futures.as_completed(futuresListComp):
                out_progress.update()
                results_list.append(future.result())

        return results_list
コード例 #3
0
def main():
    parser = argparse.ArgumentParser()
    # Required parameters
    parser.add_argument("--datapath", type=str, default="data")
    parser.add_argument("--data_type", type=str, default="train")
    parser.add_argument("--pilot_version", type=int, choices=[1, 2], default=1)
    parser.add_argument("--processes", type=int, default=4)
    parser.add_argument("--data_nums", type=int, default=64)
    parser.add_argument("--seed", type=int, default=43)
    parser.add_argument("--mode", type=int, choices=[0, 1, 2], default=None)
    parser.add_argument("--SNRdb", type=float, default=None)
    parser.add_argument("--with_pure_y", action='store_true')
    parser.add_argument("--debug", action='store_true')
    args = parser.parse_args()

    H, Htest = read_data(args.datapath)
    using_H = H if args.data_type == "train" else Htest

    generate_data_fix = partial(generate_data, args=args, H=using_H)

    tqdm.set_lock(RLock())
    with Pool(processes=args.processes,
              initializer=tqdm.set_lock,
              initargs=(tqdm.get_lock(), )) as pool:
        [
            pool.map(generate_data_fix,
                     range(args.processes * i, args.processes * (i + 1)))
            for i in range(args.data_nums // args.processes)
        ]
コード例 #4
0
    def _do_epoch(self, data_iter, is_train, batches_count, name=None):
        self.on_epoch_begin(is_train, name, batches_count=batches_count)

        progress_bar_class = ConsoleProgressBar
        if self._use_tqdm:
            try:
                from tqdm import tqdm

                tqdm.get_lock().locks = []

                progress_bar_class = tqdm
            except:
                pass

        with torch.autograd.set_grad_enabled(is_train):
            with progress_bar_class(total=batches_count) as progress_bar:
                try:
                    for _ in range(batches_count):
                        batch = next(data_iter)
                        batch_progress = self.on_batch(batch)

                        progress_bar.update()
                        progress_bar.set_description(batch_progress)
                except StopIteration:
                    pass
                epoch_progress = self.on_epoch_end()
                progress_bar.set_description(epoch_progress)
                progress_bar.refresh()
コード例 #5
0
ファイル: core.py プロジェクト: zerospaceeee/OnionSearch
def scrape():
    global filename

    start_time = datetime.now()

    # Building the filename
    filename = str(filename).replace("$DATE", start_time.strftime("%Y%m%d%H%M%S"))
    search = str(args.search).replace(" ", "")
    if len(search) > 10:
        search = search[0:9]
    filename = str(filename).replace("$SEARCH", search)

    func_args = []
    stats_dict = {}
    if args.engines and len(args.engines) > 0:
        eng = args.engines[0]
        for e in eng:
            try:
                if not (args.exclude and len(args.exclude) > 0 and e in args.exclude[0]):
                    func_args.append("{}:{}".format(e, args.search))
                    stats_dict[e] = 0
            except KeyError:
                print("Error: search engine {} not in the list of supported engines".format(e))
    else:
        for e in supported_engines.keys():
            if not (args.exclude and len(args.exclude) > 0 and e in args.exclude[0]):
                func_args.append("{}:{}".format(e, args.search))
                stats_dict[e] = 0

    # Doing multiprocessing
    units = min((cpu_count() - 1), len(func_args))
    if args.mp_units and args.mp_units > 0:
        units = min(args.mp_units, len(func_args))
    print("search.py started with {} processing units...".format(units))
    freeze_support()

    results = {}
    with Pool(units, initializer=tqdm.set_lock, initargs=(tqdm.get_lock(),)) as p:
        results_map = p.map(run_method, func_args)
        results = reduce(lambda a, b: a + b if b is not None else a, results_map)

    stop_time = datetime.now()

    if not args.continuous_write:
        with open(filename, 'w', newline='') as csv_file:
            csv_writer = csv.writer(csv_file, delimiter=field_delim, quoting=csv.QUOTE_ALL)
            for r in results:
                write_to_csv(csv_writer, r)

    total = 0
    print("\nReport:")
    print("  Execution time: %s seconds" % (stop_time - start_time))
    print("  Results per engine:")
    for r in results:
        stats_dict[r['engine']] += 1
    for s in stats_dict:
        n = stats_dict[s]
        print("    {}: {}".format(s, str(n)))
        total += n
    print("  Total: {} links written to {}".format(str(total), filename))
コード例 #6
0
ファイル: tqdm_test.py プロジェクト: popunbom/EQDmgAnalyzr
def proc_2():
    cp = CustomPool()
    
    with cp.Pool(n_process=4, initializer=tqdm.set_lock, initargs=(tqdm.get_lock(),)) as p:
        for result in tqdm(p.imap_unordered(progresser_2, range(10)), total=10):
            pass
    
    cp.update()
コード例 #7
0
def main(args):
    with open(args.vectors_file, mode="r") as fp:
        vectors_file = json.load(fp)

        vectors = vectors_file["vectors"]
        vectors_dir = os.path.dirname(args.vectors_file)

        jobs_list = list(combinations(vectors.keys(), 2))
        splitted_jobs = split_jobs(jobs_list, args.threads)
        logging.debug("Jobs count: {}".format(len(jobs_list)))
        logging.debug("  For each worker: {}".format([len(splitted) for splitted in splitted_jobs]))

        vectorbase_path = os.path.normpath(os.path.join(vectors_dir, vectors_file["base"]["path"]))
        if not os.path.isfile(vectorbase_path):
            logging.error("VectorBase file '{}' does not exist".format(vectorbase_path))
            sys.exit(1)

        scores = {}
        freeze_support()  # for Windows support
        with Pool(args.threads, initializer=tqdm.set_lock, initargs=(tqdm.get_lock(),)) as pool:
            api_vector = ApiVector(vectorbase_path)
            logging.info("Calculating the scores...")
            results = []
            for i in range(args.threads):
                task_args = (i, args.threads, api_vector, splitted_jobs[i], vectors, args.verbose)
                results.append(pool.apply_async(worker_function, args=task_args))
            pool.close()
            pool.join()
            logging.info("  COMPLETED")
            logging.info("Merging the results... ")
            scores = merge_dictionaries([res.get() for res in results])
            logging.info("  COMPLETED")

        out_dir = os.path.join(os.path.dirname(vectors_dir), "scores")
        base = vectors_file["base"]
        if args.out_file is None:
            args.out_file = os.path.join(out_dir, "scores_{}_{}_{}.json".format(base["imports_type"],
                                                                                base["weights"],
                                                                                base["size"]))
        if not os.path.exists(os.path.dirname(args.out_file)):
            try:
                os.makedirs(os.path.dirname(args.out_file))
            except OSError as exc:  # Guard against race condition
                if exc.errno != errno.EEXIST:
                    raise

        dataset_path = os.path.normpath(os.path.join(vectors_dir, vectors_file["dataset"]))
        scores_dict = {
            "dataset": os.path.relpath(dataset_path, out_dir),
            "base": vectors_file["base"],
            "scores": scores
        }
        scores_dict["base"]["path"] = os.path.relpath(vectorbase_path, out_dir)

        with open(args.out_file, mode="w") as opf:
            logging.info("Dumping scores to '{}'... ".format(os.path.basename(args.out_file)))
            json.dump(scores_dict, opf, indent=4)
            logging.info("  COMPLETED")
コード例 #8
0
def prog_map(elms, f, desc="Synth", chunksize=1,procs=8,order=True):
    with tqdm(elms, desc=desc) as t:
        with multiprocessing.Pool(procs, initializer=tqdm.set_lock,
              initargs=(tqdm.get_lock(),)) as p:
            if (order):
                pool = list(p.imap(f, t, chunksize=chunksize))
            else:
                pool = list(p.imap_unordered(f, t, chunksize=chunksize))
            return pool
コード例 #9
0
ファイル: kifwu.py プロジェクト: jumi-nordic/KiTools
def dfu_flash(dfu, dfu_file, queue, pos=0):
    '''Flash a list of DFU devices with the given file'''
    snum = dfu.get_string(dfu.dev.iSerialNumber)
    # Clear left-over errors
    if dfu.get_status()[1] == kidfu.DfuState.DFU_ERROR:
        dfu.clear_status()
    # Flash
    blocks = [
        dfu_file.data[i:i + 64] for i in range(0, len(dfu_file.data), 64)
    ]
    with tqdm.get_lock():
        progress = tqdm(total=len(blocks),
                        unit='B',
                        unit_scale=64,
                        miniters=0,
                        desc=colorize(snum, colorama.Fore.CYAN),
                        position=pos,
                        dynamic_ncols=True,
                        leave=True,
                        smoothing=0)

    for bnum, block in enumerate(blocks):
        try:
            dfu.write(bnum, block)
            status = dfu.wait_while_state(kidfu.DfuState.DFU_DOWNLOAD_BUSY)
            if status[1] != kidfu.DfuState.DFU_DOWNLOAD_IDLE:
                queue.put('%s: Error %d' % (snum, status[1]))
                return
        except usb.core.USBError:
            queue.put('%s: USB error' % snum)
            return
        with tqdm.get_lock():
            progress.update(1)

    with tqdm.get_lock():
        progress.refresh()
        progress.close()

    dfu.leave()
    status = dfu.get_status()
    if status[1] == kidfu.DfuState.DFU_MANIFEST_SYNC:
        queue.put('%s: OK' % snum)
        return
    queue.put('%s: Error finish' % snum)
コード例 #10
0
def test_multiprocessing_1():
    hyper = Hyperactive(
        distribution={
            "multiprocessing": {
                "initializer": tqdm.set_lock,
                "initargs": (tqdm.get_lock(), ),
            }
        })
    hyper.add_search(objective_function, search_space, n_iter=15, n_jobs=2)
    hyper.run()
コード例 #11
0
ファイル: yun.v0.2.py プロジェクト: qq734628996/music_dl
def get_songs_info(path,data):
    path_json=os.path.join(path,'mini_info.json')
    if os.path.exists(path_json):
        with open(path_json) as f:
            return json.load(f)
    songs=[]
    print('Geting songs information...')
    tqdm.get_lock()
    with tqdm(total=len(data['tracks']),ncols=70) as pbar:
        pool=ThreadPoolExecutor(max_workers=MAX_POOL)
        tasks=[pool.submit(get_one_song_info,songs,i,x) for i,x in enumerate(data['tracks'])]
        for state in as_completed(tasks):
            if state._result:
                pbar.update()
        songs=sorted(songs,key=lambda x: x[0])
        songs=[x[1] for x in songs]
    with open(path_json,'w') as f:
        json.dump(songs,f)
    return songs
コード例 #12
0
def parallel_ilr_inference(nb_jobs=50, **kwargs):
    kwargs_list = []
    for n in range(nb_jobs):
        kwargs['seed'] = n
        kwargs_list.append(kwargs.copy())

    with Pool(processes=min(nb_jobs, nb_cores),
              initializer=tqdm.set_lock,
              initargs=(tqdm.get_lock(), )) as p:
        res = p.map(_job, kwargs_list)

    return res
コード例 #13
0
ファイル: __init__.py プロジェクト: ohizkiya/hebphonics
def spawn_processes(init_fn, read_fn, write_fn, num_readers=1, num_writers=1):
    """Start readers and writers."""
    tqdm.set_lock(RLock())

    write_q = Queue()
    write_fn = partial(write_fn, lock=tqdm.get_lock(), write_q=write_q)
    writers = [
        Process(daemon=True, target=partial(write_fn, pos=i))
        for i in range(num_writers, 0, -1)
    ]

    read_q = Queue()
    read_fn = partial(read_fn, lock=tqdm.get_lock(), read_q=read_q, write_q=write_q)
    readers = [
        Process(daemon=True, target=partial(read_fn, pos=i))
        for i in range(num_readers + 1, num_writers, -1)
    ]

    for p in readers + writers:
        p.start()

    init_fn(read_q)
    notify_and_join(read_q, readers)
    notify_and_join(write_q, writers)
コード例 #14
0
def scp_operation(args):
    credentials = Credentials()
    targets = args.hostname.split(",")
    tqdm.set_lock(RLock())
    with Pool(initializer=tqdm.set_lock, initargs=(tqdm.get_lock(), )) as pool:
        pool.starmap(
            scp_process,
            zip(
                targets,
                repeat(credentials),
                repeat(args.filename),
                repeat(args.dst_file_path),
                list(range(len(targets))),
            ),
        )
コード例 #15
0
ファイル: evaluate_sinc.py プロジェクト: tombuchholz/mimo
def parallel_ilr_inference(nb_jobs=50, **kwargs):
    kwargs_list = []
    for n in range(nb_jobs):
        _kwargs = {'seed': kwargs['arguments'].seed,
                   'train_input': kwargs['train_input'][n],
                   'train_target': kwargs['train_target'][n],
                   'arguments': kwargs['arguments']}
        kwargs_list.append(_kwargs)

    with Pool(processes=min(nb_jobs, nb_cores),
              initializer=tqdm.set_lock,
              initargs=(tqdm.get_lock(),)) as p:
        res = p.map(_job, kwargs_list)

    return res
コード例 #16
0
def process_archives(archive_links: List[str], target_dir: str,
                     processes_number: int) -> None:
    """
    Download tar files and untar them to target directory
    :param archive_links: List of tar files links
    :param target_dir: Target directory
    :param processes_number: Number of processes which will be used in multiprocessing download
    :return: None
    """
    os.makedirs(target_dir, exist_ok=True)
    pool = Pool(processes=processes_number,
                initializer=tqdm.set_lock,
                initargs=(tqdm.get_lock(), ))
    process_archive_with_arg = partial(process_archive, target_dir)
    for _ in tqdm(pool.imap(process_archive_with_arg,
                            enumerate(archive_links)),
                  desc="process archives",
                  total=len(archive_links),
                  position=0):
        pass
コード例 #17
0
    def __init__(
        self,
        verbosity=["progress_bar", "print_results", "print_times"],
        distribution={
            "multiprocessing": {
                "initializer": tqdm.set_lock,
                "initargs": (tqdm.get_lock(),),
            }
        },
    ):
        if verbosity is False:
            verbosity = []

        self.verbosity = verbosity
        self.distribution = distribution
        self.search_ids = []

        self.process_infos = {}

        self.objFunc2results = {}
        self.search_id2results = {}
コード例 #18
0
ファイル: hyperactive.py プロジェクト: stjordanis/Hyperactive
    def __init__(
        self,
        verbosity=["progress_bar", "print_results", "print_times"],
        distribution={
            "multiprocessing": {
                "initializer": tqdm.set_lock,
                "initargs": (tqdm.get_lock(), ),
            }
        },
        n_processes="auto",
    ):
        super().__init__()
        if verbosity is False:
            verbosity = []

        self.verbosity = verbosity
        self.distribution = distribution
        self.n_processes = n_processes

        self.search_ids = []
        self.process_infos = {}

        self.progress_boards = {}
コード例 #19
0
def compute_by_window(imgs, func, window_size=16, step=2, dst_dtype=np.float32, n_worker=12):
    """
    画像を一部を切り取り、func 関数で行った計算結果を
    返却する

    Parameters
    ----------
    imgs : numpy.ndarray or tuple of numpy.ndarray
        入力画像
        tuple で複数画像を与える場合、各画像に対して
        同じ領域を切り取り、処理を行うため、各画像の
        縦、横サイズは一致している必要がある
    func : callable object
        切り取った画像の一部に対して何らかの計算を行う
        関数。引数として画像の一部が渡される。
    window_size : int or tuple of int
        画像を切り取るサイズ。
        int を指定した場合は、縦横同じサイズで切り取る。
        tuple(int, int) を指定した場合は、縦横で異なったサイズ
        で切り取り、指定する順序は ndarray の次元に対応する
    step : int or tuple of int
        切り取り間隔
        int を指定した場合は、縦横同じ間隔を開けて処理をする
        tuple(int, int) を指定した場合は、縦横で異なった間隔
        を開けて処理を行い、指定する順序は ndarray の次元に
        対応する
    dst_dtype : type, default numpy.float32
        返却値のデータ型
    n_worker : int, default 4
        並列するプロセス数

    Returns
    -------
    numpy.ndarray
        各切り取り画像に対する処理結果の行列
    """
    
    # TYPE ASSERTION
    TYPE_ASSERT(imgs, [np.ndarray, tuple])
    TYPE_ASSERT(window_size, [int, tuple])
    TYPE_ASSERT(step, [int, tuple])
    TYPE_ASSERT(dst_dtype, type)
    TYPE_ASSERT(n_worker, int)
    
    if isinstance(imgs, np.ndarray):
        imgs = tuple([imgs])
    
    for img in imgs:
        TYPE_ASSERT(img, np.ndarray)
    for i in range(len(imgs) - 1):
        SAME_SHAPE_ASSERT(imgs[i], imgs[i + 1])
    
    n_imgs = len(imgs)
    height, width = imgs[0].shape[:2]

    assert callable(func) and n_args(func) >= n_imgs, \
        "argument 'func' must be callable object which has {0} argument at least. \n".format(n_imgs) + \
        "  ( num of argumets of 'func' depends on argument 'imgs')"
    
    if isinstance(step, int):
        step = tuple([step] * 2)
    if isinstance(window_size, int):
        window_size = tuple([window_size] * 2)
    
    s_i, s_j = step
    w_w, w_h = window_size
    results_shape = ceil(height / s_i), ceil(width / s_j)
    
    # Add padding to input images
    eprint("Add padding ... ")
    imgs = [
        np.pad(
            img,
            pad_width=[
                tuple([w_w // 2]),
                tuple([w_h // 2]),
            ] + [] if img.ndim == 2 else [tuple([0])],
            mode="constant",
            constant_values=0
        )
        for img in imgs
    ]

    
    if n_worker == 1:
        results = np.ndarray(results_shape, dtype=dst_dtype)
        
        for ii, i in tqdm(enumerate(range(w_h // 2, height + w_h // 2, s_i)), total=results_shape[0]):
            
            for jj, j in tqdm(enumerate(range(w_w // 2, width + w_w // 2, s_j)), total=results_shape[1], leave=False):
                
                rois = [
                    img[
                        get_window_rect(
                            img.shape,
                            center=(j, i),
                            wnd_size=(w_w, w_h),
                            ret_type="slice"
                        )
                    ]
                    for img in imgs
                ]
                
                results[ii][jj] = func(*rois)
    
    else:
        global _func
        global _callee
        
        _func = func
        
        def _callee(_imgs, _func, _width, _s_j, _w_w, _n_loop):
    
            _worker_id = current_process()._identity[0]
            _desc = f"Worker #{_worker_id:3d}"
            
            _results = list()
            
            for jj, j in tqdm(enumerate(range(_w_w // 2, _width + _w_w // 2, _s_j)), total=_n_loop, desc=_desc,
                              position=_worker_id,
                              leave=False):
                _rois = [
                    # _roi[:, j:j + _w_w]
                    _roi[
                        get_window_rect(
                            _roi.shape,
                            center=(j, -1),
                            wnd_size=(_w_w, -1),
                            ret_type="slice"
                        )
                    ]
                    for _roi in _imgs
                ]
                _results.append(_func(*_rois))
    
            return _results


        progress_bar = tqdm(total=results_shape[0], position=0)


        def _update_progressbar(arg):
            progress_bar.update()


        cp = CustomPool()
        pool = cp.Pool(initializer=tqdm.set_lock, initargs=(tqdm.get_lock(),))

        results = list()
        for ii, i in enumerate(range(w_h // 2, height + w_h // 2, s_i)):
    
            rois = [
                img[
                    get_window_rect(
                        img.shape,
                        center=(-1, i),
                        wnd_size=(-1, w_h),
                        ret_type="slice"
                    )
                ]
                for img in imgs
            ]
            
            results.append(
                pool.apply_async(
                    _callee,
                    args=(rois, func, width, s_j, w_h, results_shape[1]),
                    callback=_update_progressbar
                )
            )
        pool.close()
        pool.join()
        cp.update()
        
        results = np.array(
            [result.get() for result in results],
            dtype=dst_dtype
        )
    
    return results
コード例 #20
0
ファイル: parallel_bars.py プロジェクト: xxxhycl2010/tqdm
        # we think we know about other bars (currently only py3 threading)
        if n == 6:
            tqdm.write("n == 6 completed")


if __name__ == '__main__':
    freeze_support()  # for Windows support
    L = list(range(NUM_SUBITERS))[::-1]

    print("Manual nesting")
    for i in trange(16, desc="1"):
        for _ in trange(16, desc="2 @ %d" % i, leave=i % 2):
            sleep(0.01)

    print("Multi-processing")
    p = Pool(initializer=tqdm.set_lock, initargs=(tqdm.get_lock(),))
    p.map(progresser, L)

    # unfortunately need ncols
    # to print spaces over leftover multi-processing bars (#796)
    with tqdm(leave=False) as t:
        ncols = t.ncols or 80
    print(("{msg:<{ncols}}").format(msg="Multi-threading", ncols=ncols))

    # explicitly set just threading lock for nonblocking progress
    tqdm.set_lock(RLock())
    with ThreadPoolExecutor() as p:
        progresser_thread = partial(
            progresser, write_safe=not PY2, blocking=False)
        p.map(progresser_thread, L)
コード例 #21
0
                                delimiter=',',
                                fieldnames=OUTPUT_FIELDS)

    output_csv.writerow(dict((fn, fn) for fn in OUTPUT_FIELDS))

    # Gather all rows into memory
    all_input_rows = [input_row for input_row in input_csv]

    # Split rows into NUM_CORES chunks for parallel processing
    input_chunks = numpy.array_split(numpy.array(all_input_rows), NUM_CORES)
    input_chunks_with_index = [(index, chunk)
                               for index, chunk in enumerate(input_chunks)]

    # Create pool of workers
    pool = mp.Pool(initializer=tqdm.set_lock,
                   initargs=(tqdm.get_lock(), ),
                   processes=NUM_CORES)

    # Apply transformation in parallel
    print("Starting transformation with %s workers..." % NUM_CORES)
    output_chunks = pool.starmap(batch_tranform_to_rayyan,
                                 input_chunks_with_index)

    # Wrap up workers
    pool.close()
    pool.join()

    # Write output to file
    for chunk in output_chunks:
        for row in chunk:
            output_csv.writerow(row)
コード例 #22
0
    def classify(self):
        """
        エッジ画素分類を行う
        
        - テンプレートマッチングにより
          「端点」「分岐点」を探索
        
        - テンプレートにマッチしなかったエッジ画素は
          「通過点」とする

        Returns
        -------
        numpy.ndarray
            エッジ画素分類結果
        """
        self.check_image()

        BG, FG = self.BG, self.FG
        k_size = self.K_SIZE
        logger = self.logger
        img = self.img

        # 幅 1 のパディングを追加
        img = np.pad(img,
                     pad_width=k_size // 2,
                     mode="constant",
                     constant_values=BG)
        height, width = img.shape[:2]

        progress_bar = tqdm(total=height, position=0)

        def _update_progressbar(arg):
            progress_bar.update()

        cp = CustomPool()
        pool = cp.Pool(initializer=tqdm.set_lock, initargs=(tqdm.get_lock(), ))

        results = list()

        # 全画素ループ (tqdm で進捗可視化)
        for i in trange((k_size // 2),
                        height - (k_size // 2),
                        desc="Height",
                        leave=False):

            roi = img[i:i + k_size, :]

            results.append(
                pool.apply_async(self._classify_pixel,
                                 args=(roi, ),
                                 callback=_update_progressbar))
        pool.close()
        pool.join()
        cp.update()

        self.classified = np.array([result.get() for result in results],
                                   dtype=self.classified.dtype)

        if logger:
            logger.logging_img(self.classified, "classified")
            logger.logging_img(self.get_as_image(), "classified_visualized")

        return self.classified
コード例 #23
0
ファイル: __main__.py プロジェクト: nilsleiffischer/gwpv
def render_parallel(num_jobs, scene, frame_window=None, **kwargs):
    import functools
    import multiprocessing
    from multiprocessing import RLock

    import h5py
    from tqdm import tqdm

    from gwpv.scene_configuration import animate, parse_as

    logger = logging.getLogger(__name__)

    # Infer frame window if needed
    if "FreezeTime" in scene["Animation"]:
        frame_window = (0, 1)
    elif frame_window is None:
        if "Crop" in scene["Animation"]:
            max_animation_length = (scene["Animation"]["Crop"][1] -
                                    scene["Animation"]["Crop"][0])
        else:
            waveform_file_and_subfile = parse_as.file_and_subfile(
                scene["Datasources"]["Waveform"])
            with h5py.File(waveform_file_and_subfile[0], "r") as waveform_file:
                waveform_times = waveform_file[
                    waveform_file_and_subfile[1]]["Y_l2_m2.dat"][:, 0]
                max_animation_length = waveform_times[-1] - waveform_times[0]
                logger.debug(
                    f"Inferred max. animation length {max_animation_length}M"
                    " from waveform data.")
        frame_window = (
            0,
            animate.num_frames(
                max_animation_length=max_animation_length,
                animation_speed=scene["Animation"]["Speed"],
                frame_rate=scene["Animation"]["FrameRate"],
            ),
        )
        logger.debug(f"Inferred total frame window: {frame_window}")

    num_frames = frame_window[1] - frame_window[0]
    frames_per_job = int(num_frames / num_jobs)
    extra_frames = num_frames % num_jobs
    logger.debug(f"Using {num_jobs} jobs with {frames_per_job} frames per job"
                 f" ({extra_frames} jobs render an additional frame).")

    frame_windows = []
    distributed_frames = frame_window[0]
    for i in range(num_jobs):
        frames_this_job = frames_per_job + (1 if i < extra_frames else 0)
        frame_windows.append(
            (distributed_frames, distributed_frames + frames_this_job))
        distributed_frames += frames_this_job
    logger.debug(f"Frame windows: {frame_windows}")

    tqdm.set_lock(RLock())
    pool = multiprocessing.Pool(num_jobs,
                                initializer=tqdm.set_lock,
                                initargs=(tqdm.get_lock(), ))
    from gwpv.render.frames import _render_frame_window

    render_frame_window = functools.partial(_render_frame_window,
                                            scene=scene,
                                            **kwargs)
    pool.starmap(render_frame_window, enumerate(frame_windows))
コード例 #24
0
ファイル: optimize.py プロジェクト: PromyLOPh/lulua
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.

import pickle, sys, random, time, logging, argparse
from fnmatch import fnmatch
from copy import deepcopy
from typing import List, Tuple, Optional, Text, FrozenSet
from abc import abstractmethod
from operator import itemgetter
from collections import defaultdict
from itertools import chain

from tqdm import tqdm
# work around pypy bug https://bitbucket.org/pypy/pypy/issues/2953/deadlock
tqdm.get_lock().locks = []
import yaml

from .layout import defaultLayouts, ButtonCombination, Layer, KeyboardLayout, GenericLayout
from .carpalx import Carpalx, models, ModelParams
from .writer import Writer
from .util import first
from .keyboard import defaultKeyboards, LetterButton


class Annealer:
    """
    Simulated annealing.

    Override .mutate() to suit your needs. Uses exponential cooling (10^(-progress*factor))
コード例 #25
0
 def _initialize(proc_name):
     tqdm.set_lock(tqdm.get_lock())
     current_process().name = proc_name
コード例 #26
0
ファイル: log.py プロジェクト: EruditePanda/nerus
def log_progress(items, prefix=None, total=None):
    # https://github.com/tqdm/tqdm/issues/461#issuecomment-334343230
    tqdm.get_lock().locks = []
    return tqdm(items, desc=prefix, total=total)
コード例 #27
0
if __name__ == "__main__":
  input_csv = csv.DictReader(open(sys.argv[1], 'r', encoding='utf-8', errors='ignore'), delimiter=',')
  output_csv = csv.DictWriter(open(sys.argv[2], "w+"), delimiter=',', fieldnames=OUTPUT_FIELDS)

  output_csv.writerow(dict((fn, fn) for fn in OUTPUT_FIELDS))

  # Gather all rows into memory
  all_input_rows = [input_row for input_row in input_csv]

  # Split rows into NUM_CORES chunks for parallel processing
  input_chunks = numpy.array_split(numpy.array(all_input_rows), NUM_CORES)
  input_chunks_with_index = [(index, chunk) for index, chunk in enumerate(input_chunks)]

  # Create pool of workers
  pool = mp.Pool(initializer=tqdm.set_lock, initargs=(tqdm.get_lock(),), processes=NUM_CORES)

  # Apply transformation in parallel
  print("Starting transformation with %s workers..." % NUM_CORES)
  output_chunks = pool.starmap(batch_tranform_to_rayyan, input_chunks_with_index)

  # Wrap up workers
  pool.close()
  pool.join()

  # Write output to file
  for chunk in output_chunks:
    for row in chunk:
      output_csv.writerow(row)

  print("Complete.")
コード例 #28
0
    def find_color_threshold_in_hsv(self, img, ground_truth, precision=10):
        """
        HSV 色空間における色閾値探索

        - RGB → HSV 変換 を行う

        - HSV の各チャンネルで閾値処理を行い統合する

        - 正解データを用いて精度評価を行う


        Parameters
        ----------
        img : numpy.ndarray
            入力画像 (8-Bit RGB カラー)
        ground_truth : numpy.ndarray
            正解データ (1-Bit)
        precision : int
            閾値計算の精度


        Returns
        -------
        reasonable_params : dict
            F値が最も高くなったときの閾値
        result : numpy.ndarray
            その際の閾値処理結果画像 (1-Bit 2値画像)

        Notes
        -----
        `ground_truth`:
            - 1-Bit (bool 型) 2値画像
            - 黒:背景、白:被害領域
        `precision`:
            - precision=N のとき、H, S, V の各チャンネルに対し
              2N ずつにパーセンタイル分割を行う
        """

        global _worker_find_color_threshold_in_hsv

        # Worker methods executed parallel
        @worker_exception_raisable
        def _worker_find_color_threshold_in_hsv(_img, _masked, _q_h, _q_s):
            # Value used in tqdm
            _worker_id = current_process()._identity[0]
            _desc = f"Worker #{_worker_id:3d}"

            # Unpack arguments
            _q_h_low, _q_h_high = _q_h
            _q_s_low, _q_s_high = _q_s

            # Split image to each channne
            _img_h, _img_s, _img_v = [_img[:, :, i] for i in range(3)]
            _masked_h, _masked_s, _masked_v = [_masked[:, i] for i in range(3)]

            # Initialize variables
            reasonable_params = {
                "Score": {
                    "F Score": -1,
                },
                "Range": -1
            }

            # Find thresholds
            for _q_v_low, _q_v_high in tqdm(list(
                    product(np.linspace(50 / precision, 50, precision),
                            repeat=2)),
                                            desc=_desc,
                                            position=_worker_id,
                                            leave=False):

                # Generate result
                _h_min, _h_max = self._in_range_percentile(
                    _masked_h, (_q_h_low, _q_h_high))
                _s_min, _s_max = self._in_range_percentile(
                    _masked_s, (_q_s_low, _q_s_high))
                _v_min, _v_max = self._in_range_percentile(
                    _masked_v, (_q_v_low, _q_v_high))

                _result = (((_h_min <= _img_h) & (_img_h <= _h_max)) &
                           ((_s_min <= _img_s) & (_img_s <= _s_max)) &
                           ((_v_min <= _img_v) & (_img_v <= _v_max)))

                # Calculate score
                _cm, _metrics = evaluation_by_confusion_matrix(
                    _result, ground_truth)

                # Update reasonable_params
                if _metrics["F Score"] > reasonable_params["Score"]["F Score"]:
                    reasonable_params = {
                        "Score": _metrics,
                        "Confusion Matrix": _cm,
                        "Range": {
                            "H": (_h_min, _h_max, _q_h_low, _q_h_high),
                            "S": (_s_min, _s_max, _q_s_low, _q_s_high),
                            "V": (_v_min, _v_max, _q_v_low, _q_v_high),
                        }
                    }

            return reasonable_params

        # Check arguments
        NDARRAY_ASSERT(img, ndim=3, dtype=np.uint8)
        NDARRAY_ASSERT(ground_truth, ndim=2, dtype=np.bool)
        SAME_SHAPE_ASSERT(img, ground_truth, ignore_ndim=True)

        # Convert RGB -> HSV
        img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)

        # `masked`: `img` masked by `ground_truth`
        masked = img[ground_truth]

        # Percentile Split
        Q = list(product(np.linspace(50 / precision, 50, precision), repeat=4))

        # `progress_bar`: whole progress bar
        progress_bar = tqdm(total=len(Q), position=0)

        def _update_progressbar(arg):
            progress_bar.update()

        # Initialize process pool
        cp = CustomPool()
        pool = cp.Pool(initializer=tqdm.set_lock, initargs=(tqdm.get_lock(), ))

        results = list()

        # Multi-Processing !
        for q_h_low, q_h_high, q_s_low, q_s_high in Q:
            results.append(
                pool.apply_async(_worker_find_color_threshold_in_hsv,
                                 args=(img, masked, (q_h_low, q_h_high),
                                       (q_s_low, q_s_high)),
                                 callback=_update_progressbar))
        pool.close()
        pool.join()
        cp.update()

        # Resolve results
        try:
            results = [result.get() for result in results]
        except Exception as e:
            print(e)

        # Get result whose F-Score is max in results
        reasonable_params = max(results, key=lambda e: e["Score"]["F Score"])

        img_h, img_s, img_v = [img[:, :, i] for i in range(3)]
        h_min, h_max, _, _ = reasonable_params["Range"]["H"]
        s_min, s_max, _, _ = reasonable_params["Range"]["S"]
        v_min, v_max, _, _ = reasonable_params["Range"]["V"]

        # Generate image using reasonable thresholds
        result = (((h_min <= img_h) & (img_h <= h_max)) &
                  ((s_min <= img_s) & (img_s <= s_max)) & ((v_min <= img_v) &
                                                           (img_v <= v_max)))

        # Logging
        if self.logger:
            self.logger.logging_dict(reasonable_params,
                                     "color_thresholds_in_hsv",
                                     sub_path=self.logger_sub_path)
            self.logger.logging_img(result,
                                    "meanshift_thresholded",
                                    sub_path=self.logger_sub_path)

        return reasonable_params, result
コード例 #29
0

def process_collection(collection):
    fid = collection["foreign_id"]
    fid = fid.replace("/", "")
    fname = f"./dataset_components/{fid}.json"
    if os.path.exists(fname):
        return
    try:
        components = calculate_components(collection)
    except AlephException as e:
        print(f"Aleph Error: {fid}: {e}")
        return
    with open(fname, "w+") as fd:
        data = {
            "components_histogram": dict(components),
            "collection": collection,
        }
        fd.write(json.dumps(data))


if __name__ == "__main__":
    init_aleph()
    collections = api.filter_collections("*")
    N = collections.result["total"]
    tqdm.set_lock(mp.RLock())
    with mp.Pool(processes=4, initializer=init_aleph, initargs=(tqdm.get_lock(),)) as p:
        results = p.imap_unordered(process_collection, collections, chunksize=32)
        for _ in tqdm(results, total=N, position=0):
            pass
コード例 #30
0
def find_ms_params(n):
    file_name = f"aerial_roi{n}.png"
    
    src = imread_with_error(
        join(ROOT_DIR_SRC, file_name)
    )
    ans = imread_with_error(
        join(ROOT_DIR_ANS, file_name)
    )
    
    
    ms_params = sum([
        [
            {
                "spatial_radius": sp,
                "range_radius": sr,
                "min_density": 0
            }
            for sr in np.arange(SR_RANGE[0], SR_RANGE[0]+SR_RANGE[1], SR_RANGE[2])
        ]
        for sp in np.arange(SP_RANGE[0], SP_RANGE[0]+SP_RANGE[1], SP_RANGE[2])
    ], [])
    
    progress_bar = tqdm(total=len(ms_params), position=0)
    
    def _update_progressbar(arg):
        progress_bar.update()
    
    
    cp = CustomPool()
    pool = cp.Pool(n_process=6, initializer=tqdm.set_lock, initargs=(tqdm.get_lock(),))
    
    results = list()
    for params in ms_params:
        
        results.append(
            pool.apply_async(
                func_worker,
                args=(src, ),
                kwds=params,
                callback=_update_progressbar
            )
        )
    pool.close()
    pool.join()
    cp.update()
    
    results = [result.get() for result in results]
    
    results = sorted(
        [
            (
                sp,
                sr,
                np.sum(
                    np.abs(segmented - ans)
                )
            )
            for segmented, sp, sr in results
        ],
        key=lambda e: e[0]
    )
    
    pprint(results)
    
    with open(f"tmp/find_ms_params_{n}.csv", "wt") as f:
        f.write("spatial_radius, range_radius, n_diffs\n")
        for result in results:
            f.write(", ".join([ str(x) for x in result]) + "\n")
    
    return results