def main(tracktor, reid, _config, _log, _run):

    sacred.commands.print_config(_run)

    # set all seeds
    torch.manual_seed(tracktor['seed'])
    torch.cuda.manual_seed(tracktor['seed'])
    np.random.seed(tracktor['seed'])
    torch.backends.cudnn.deterministic = True

    output_dir = osp.join(get_output_dir(tracktor['module_name']),
                          tracktor['name'], tracktor['output_subdir'])
    sacred_config = osp.join(output_dir, 'sacred_config.yaml')

    if not osp.exists(output_dir):
        os.makedirs(output_dir)
    with open(sacred_config, 'w') as outfile:
        yaml.dump(_config, outfile, default_flow_style=False)

    ##########################
    # Initialize the modules #
    ##########################

    # object detection
    _log.info("Initializing object detector.")

    obj_detect = FRCNN_FPN(num_classes=2).to(device)
    obj_detect.load_state_dict(
        torch.load(_config['tracktor']['obj_detect_model'],
                   map_location=lambda storage, loc: storage))

    obj_detect.eval()

    # reid
    reid_network = resnet50(pretrained=False, **reid['cnn']).to(device)
    reid_network.load_state_dict(
        torch.load(tracktor['reid_weights'],
                   map_location=lambda storage, loc: storage))
    reid_network.eval()

    # tracktor
    if 'oracle' in tracktor:
        tracker = OracleTracker(obj_detect, reid_network, tracktor['tracker'],
                                tracktor['oracle'])
    else:
        tracker = Tracker(obj_detect, reid_network, tracktor['tracker'])

    time_total = 0
    num_frames = 0
    mot_accums = []
    dataset = Datasets(tracktor['dataset'])

    for seq in dataset:

        tracker.reset()

        start = time.time()

        _log.info(f"Tracking: {seq}")

        data_loader = DataLoader(seq, batch_size=1, shuffle=False)
        for i, frame in enumerate(tqdm(data_loader)):
            if len(seq) * tracktor['frame_split'][0] <= i <= len(
                    seq) * tracktor['frame_split'][1]:
                tracker.step(frame, i)
                num_frames += 1

        results = tracker.get_results()

        time_total += time.time() - start

        _log.info(f"Tracks found: {len(results)}")
        _log.info(f"Runtime for {seq}: {time.time() - start :.1f} s.")

        if tracktor['interpolate']:
            results = interpolate(results)

        if seq.no_gt:
            _log.info(f"No GT data for evaluation available.")
        else:
            mot_accums.append(get_mot_accum(results, seq))

        _log.info(f"Writing predictions to: {output_dir}")

        seq.write_results(results, output_dir)

        if tracktor['write_images']:
            plot_sequence(results, seq,
                          osp.join(output_dir, tracktor['dataset'], str(seq)))

    _log.info(
        f"Tracking runtime for all sequences (without evaluation or image writing): "
        f"{time_total:.1f} s ({num_frames / time_total:.1f} Hz)")

    if mot_accums:
        summary = evaluate_mot_accums(mot_accums,
                                      [str(s) for s in dataset if not s.no_gt],
                                      generate_overall=True)
        summary.to_pickle(
            "output/finetuning_results/results_{}_{}_{}_{}_{}.pkl".format(
                tracktor['output_subdir'],
                tracktor['tracker']['finetuning']['max_displacement'],
                tracktor['tracker']['finetuning']['batch_size'],
                tracktor['tracker']['finetuning']['learning_rate'],
                tracktor['tracker']['finetuning']['iterations']))
コード例 #2
0
def main(tracktor, reid, _config, _log, _run):
    sacred.commands.print_config(_run)

    # set all seeds
    torch.manual_seed(tracktor['seed'])
    torch.cuda.manual_seed(tracktor['seed'])
    np.random.seed(tracktor['seed'])
    torch.backends.cudnn.deterministic = True

    output_dir = osp.join(get_output_dir(tracktor['module_name']), tracktor['name'])
    sacred_config = osp.join(output_dir, 'sacred_config.yaml')

    if not osp.exists(output_dir):
        os.makedirs(output_dir)
    with open(sacred_config, 'w') as outfile:
        yaml.dump(_config, outfile, default_flow_style=False)

    ##########################
    # Initialize the modules #
    ##########################

    # object detection
    _log.info("Initializing object detector.")

    obj_detect = FRCNN_FPN(num_classes=2)
    obj_detect.load_state_dict(torch.load(_config['tracktor']['obj_detect_model'],
                               map_location=lambda storage, loc: storage))

    obj_detect.eval()
    obj_detect.cuda()

    # reid
    reid_network = resnet50(pretrained=False, **reid['cnn'])
    reid_network.load_state_dict(torch.load(tracktor['reid_weights'],
                                 map_location=lambda storage, loc: storage))
    reid_network.eval()
    reid_network.cuda()

    # neural motion model 

    vis_model = VisSimpleReID()

    motion_model = MotionModelV3(vis_model)
    motion_model.load_state_dict(torch.load('output/motion/finetune_motion_model_v3.pth')) 

    motion_model.eval()
    motion_model.cuda()

    save_vis_results = False

    # tracktor
    if 'oracle' in tracktor:
        tracker = OracleTracker(obj_detect, reid_network, tracktor['tracker'], tracktor['oracle'])
    else:
        # tracker = Tracker(obj_detect, reid_network, tracktor['tracker'])
        tracker = TrackerNeuralMM(obj_detect, reid_network, motion_model, tracktor['tracker'], save_vis_results=save_vis_results, vis_model=None)

    time_total = 0
    num_frames = 0
    mot_accums = []
    dataset = Datasets(tracktor['dataset'], {'use_val_split':True})
    for seq in dataset:
        tracker.reset()

        start = time.time()

        _log.info(f"Tracking: {seq}")

        data_loader = DataLoader(seq, batch_size=1, shuffle=False)
        for i, frame in enumerate(tqdm(data_loader)):
            if len(seq) * tracktor['frame_split'][0] <= i <= len(seq) * tracktor['frame_split'][1]:
                with torch.no_grad():
                    tracker.step(frame)
                num_frames += 1
        results = tracker.get_results()

        time_total += time.time() - start

        _log.info(f"Tracks found: {len(results)}")
        _log.info(f"Runtime for {seq}: {time.time() - start :.1f} s.")

        if tracktor['interpolate']:
            results = interpolate(results)

        if seq.no_gt:
            _log.info(f"No GT data for evaluation available.")
        else:
            mot_accums.append(get_mot_accum(results, seq))

        _log.info(f"Writing predictions to: {output_dir}")
        seq.write_results(results, output_dir)
        if save_vis_results:
            vis_results = tracker.get_vis_results()
            seq.write_vis_results(vis_results, output_dir)

        if tracktor['write_images']:
            plot_sequence(results, seq, osp.join(output_dir, tracktor['dataset'], str(seq)))

    _log.info(f"Tracking runtime for all sequences (without evaluation or image writing): "
              f"{time_total:.1f} s ({num_frames / time_total:.1f} Hz)")
    if mot_accums:
        evaluate_mot_accums(mot_accums, [str(s) for s in dataset if not s.no_gt], generate_overall=True)
コード例 #3
0
def main(module_name, name, seed, obj_detect_models, reid_models, tracker,
         oracle, dataset, load_results, frame_range, interpolate, write_images,
         _config, _log, _run):
    sacred.commands.print_config(_run)

    # set all seeds
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    np.random.seed(seed)
    torch.backends.cudnn.deterministic = True

    output_dir = osp.join(get_output_dir(module_name), name)
    sacred_config = osp.join(output_dir, 'sacred_config.yaml')

    if not osp.exists(output_dir):
        os.makedirs(output_dir)
    with open(sacred_config, 'w') as outfile:
        yaml.dump(copy.deepcopy(_config), outfile, default_flow_style=False)

    ##########################
    # Initialize the modules #
    ##########################

    # object detection
    _log.info("Initializing object detector(s).")

    obj_detects = []
    for obj_detect_model in obj_detect_models:
        obj_detect = FRCNN_FPN(num_classes=2)
        obj_detect.load_state_dict(
            torch.load(obj_detect_model,
                       map_location=lambda storage, loc: storage))
        obj_detects.append(obj_detect)

        obj_detect.eval()
        if torch.cuda.is_available():
            obj_detect.cuda()

    # reid
    _log.info("Initializing reID network(s).")

    reid_networks = []
    for reid_model in reid_models:
        reid_cfg = os.path.join(os.path.dirname(reid_model),
                                'sacred_config.yaml')
        reid_cfg = yaml.safe_load(open(reid_cfg))

        reid_network = ReIDNetwork_resnet50(pretrained=False,
                                            **reid_cfg['model_args'])
        reid_network.load_state_dict(
            torch.load(reid_model, map_location=lambda storage, loc: storage))
        reid_network.eval()
        if torch.cuda.is_available():
            reid_network.cuda()

        reid_networks.append(reid_network)

    # tracktor
    if oracle is not None:
        tracker = OracleTracker(obj_detect, reid_network, tracker, oracle)
    else:
        tracker = Tracker(obj_detect, reid_network, tracker)

    time_total = 0
    num_frames = 0
    mot_accums = []
    dataset = Datasets(dataset)

    for seq, obj_detect, reid_network in zip(dataset, obj_detects,
                                             reid_networks):
        tracker.obj_detect = obj_detect
        tracker.reid_network = reid_network
        tracker.reset()

        _log.info(f"Tracking: {seq}")

        start_frame = int(frame_range['start'] * len(seq))
        end_frame = int(frame_range['end'] * len(seq))

        seq_loader = DataLoader(
            torch.utils.data.Subset(seq, range(start_frame, end_frame)))
        num_frames += len(seq_loader)

        results = {}
        if load_results:
            results = seq.load_results(output_dir)
        if not results:
            start = time.time()

            for frame_data in tqdm(seq_loader):
                with torch.no_grad():
                    tracker.step(frame_data)

            results = tracker.get_results()

            time_total += time.time() - start

            _log.info(f"Tracks found: {len(results)}")
            _log.info(f"Runtime for {seq}: {time.time() - start :.2f} s.")

            if interpolate:
                results = interpolate_tracks(results)

            _log.info(f"Writing predictions to: {output_dir}")
            seq.write_results(results, output_dir)

        if seq.no_gt:
            _log.info("No GT data for evaluation available.")
        else:
            mot_accums.append(get_mot_accum(results, seq_loader))

        if write_images:
            plot_sequence(results, seq,
                          osp.join(output_dir, str(dataset), str(seq)),
                          write_images)

    if time_total:
        _log.info(
            f"Tracking runtime for all sequences (without evaluation or image writing): "
            f"{time_total:.2f} s for {num_frames} frames ({num_frames / time_total:.2f} Hz)"
        )
    if mot_accums:
        _log.info("Evaluation:")
        evaluate_mot_accums(mot_accums,
                            [str(s) for s in dataset if not s.no_gt],
                            generate_overall=True)
コード例 #4
0
def my_main(tracktor, siamese, _config):
    # set all seeds
    torch.manual_seed(tracktor['seed'])
    torch.cuda.manual_seed(tracktor['seed'])
    np.random.seed(tracktor['seed'])
    torch.backends.cudnn.deterministic = True

    output_dir = osp.join(get_output_dir(tracktor['module_name']),
                          tracktor['name'])
    sacred_config = osp.join(output_dir, 'sacred_config.yaml')

    if not osp.exists(output_dir):
        os.makedirs(output_dir)
    with open(sacred_config, 'w') as outfile:
        yaml.dump(_config, outfile, default_flow_style=False)

    ##########################
    # Initialize the modules #
    ##########################

    # object detection
    print("[*] Building object detector")
    if tracktor['network'].startswith('frcnn'):
        # FRCNN
        from tracktor.frcnn import FRCNN
        from frcnn.model import config

        if _config['frcnn']['cfg_file']:
            config.cfg_from_file(_config['frcnn']['cfg_file'])
        if _config['frcnn']['set_cfgs']:
            config.cfg_from_list(_config['frcnn']['set_cfgs'])

        obj_detect = FRCNN(num_layers=101)
        obj_detect.create_architecture(2,
                                       tag='default',
                                       anchor_scales=config.cfg.ANCHOR_SCALES,
                                       anchor_ratios=config.cfg.ANCHOR_RATIOS)
        obj_detect.load_state_dict(torch.load(tracktor['obj_detect_weights']))
    elif tracktor['network'].startswith('fpn'):
        # FPN
        from tracktor.fpn import FPN
        from fpn.model.utils import config
        config.cfg.TRAIN.USE_FLIPPED = False
        config.cfg.CUDA = True
        config.cfg.TRAIN.USE_FLIPPED = False
        checkpoint = torch.load(tracktor['obj_detect_weights'])

        if 'pooling_mode' in checkpoint.keys():
            config.cfg.POOLING_MODE = checkpoint['pooling_mode']

        set_cfgs = [
            'ANCHOR_SCALES', '[4, 8, 16, 32]', 'ANCHOR_RATIOS', '[0.5,1,2]'
        ]
        config.cfg_from_file(_config['tracktor']['obj_detect_config'])
        config.cfg_from_list(set_cfgs)

        obj_detect = FPN(('__background__', 'pedestrian'),
                         101,
                         pretrained=False)
        obj_detect.create_architecture()

        obj_detect.load_state_dict(checkpoint['model'])
    else:
        raise NotImplementedError(
            f"Object detector type not known: {tracktor['network']}")

    pprint.pprint(config.cfg)
    obj_detect.eval()
    obj_detect.cuda()

    # reid
    reid_network = resnet50(pretrained=False, **siamese['cnn'])
    reid_network.load_state_dict(torch.load(tracktor['reid_network_weights']))
    reid_network.eval()
    reid_network.cuda()

    # tracktor
    if 'oracle' in tracktor:
        tracker = OracleTracker(obj_detect, reid_network, tracktor['tracker'],
                                tracktor['oracle'])
    else:
        tracker = Tracker(obj_detect, reid_network, tracktor['tracker'])

    print("[*] Beginning evaluation...")

    time_total = 0
    for sequence in Datasets(tracktor['dataset']):
        tracker.reset()

        now = time.time()

        print("[*] Evaluating: {}".format(sequence))

        data_loader = DataLoader(sequence, batch_size=1, shuffle=False)
        for i, frame in enumerate(data_loader):
            # frame_split =  [0.0, 1.0]
            if i >= len(sequence) * tracktor['frame_split'][0] and i <= len(
                    sequence) * tracktor['frame_split'][1]:

                tracker.step(frame)
        results = tracker.get_results()

        time_total += time.time() - now

        print("[*] Tracks found: {}".format(len(results)))
        print("[*] Time needed for {} evaluation: {:.3f} s".format(
            sequence,
            time.time() - now))

        if tracktor['interpolate']:
            results = interpolate(results)

        sequence.write_results(results, osp.join(output_dir))

        if tracktor['write_images']:
            plot_sequence(
                results, sequence,
                osp.join(output_dir, tracktor['dataset'], str(sequence)))

    print("[*] Evaluation for all sets (without image generation): {:.3f} s".
          format(time_total))
コード例 #5
0
def my_main(tracktor, siamese, _config):
    # set all seeds
    torch.manual_seed(tracktor['seed'])
    torch.cuda.manual_seed(tracktor['seed'])
    np.random.seed(tracktor['seed'])
    torch.backends.cudnn.deterministic = True

    output_dir = osp.join(get_output_dir(tracktor['module_name']),
                          tracktor['name'])
    sacred_config = osp.join(output_dir, 'sacred_config.yaml')

    if not osp.exists(output_dir):
        os.makedirs(output_dir)
    with open(sacred_config, 'w') as outfile:
        yaml.dump(_config, outfile, default_flow_style=False)

    ##########################
    # Initialize the modules #
    ##########################

    # object detection

    print("[*] Building object detector")
    print("tracktor['network'] is: ", tracktor['network'])

    if tracktor['network'].startswith('frcnn'):
        # FRCNN
        from tracktor.frcnn import FRCNN
        from frcnn.model import config

        if _config['frcnn']['cfg_file']:
            config.cfg_from_file(_config['frcnn']['cfg_file'])
        if _config['frcnn']['set_cfgs']:
            config.cfg_from_list(_config['frcnn']['set_cfgs'])

        obj_detect = FRCNN(num_layers=101)
        obj_detect.create_architecture(2,
                                       tag='default',
                                       anchor_scales=config.cfg.ANCHOR_SCALES,
                                       anchor_ratios=config.cfg.ANCHOR_RATIOS)
        state_dict_person = torch.load(tracktor['obj_detect_weights_person'])
        obj_detect.load_state_dict(state_dict_person)
        # loading head-detection model
        obj_detect_head = FRCNN(num_layers=101)
        obj_detect_head.create_architecture(
            2,
            tag='default',
            anchor_scales=config.cfg.ANCHOR_SCALES,
            anchor_ratios=config.cfg.ANCHOR_RATIOS)
        state_dict_head = torch.load(tracktor['obj_detect_weights_head'])
        state_dict_head = my_transform(state_dict_head)
        obj_detect_head.load_state_dict(state_dict_head)

    elif tracktor['network'].startswith('mask-rcnn'):
        # MASK-RCNN
        pass

    elif tracktor['network'].startswith('fpn'):
        # FPN
        from tracktor.fpn import FPN
        from fpn.model.utils import config
        config.cfg.TRAIN.USE_FLIPPED = False
        config.cfg.CUDA = True
        config.cfg.TRAIN.USE_FLIPPED = False
        checkpoint = torch.load(tracktor['obj_detect_weights'])

        if 'pooling_mode' in checkpoint.keys():
            config.cfg.POOLING_MODE = checkpoint['pooling_mode']

        set_cfgs = [
            'ANCHOR_SCALES', '[4, 8, 16, 32]', 'ANCHOR_RATIOS', '[0.5,1,2]'
        ]
        config.cfg_from_file(_config['tracktor']['obj_detect_config'])
        config.cfg_from_list(set_cfgs)

        obj_detect = FPN(('__background__', 'pedestrian'),
                         101,
                         pretrained=False)
        obj_detect.create_architecture()

        obj_detect.load_state_dict(checkpoint['model'])
    else:
        raise NotImplementedError(
            f"Object detector type not known: {tracktor['network']}")

    pprint.pprint(config.cfg)
    obj_detect.eval()
    obj_detect.cuda()
    obj_detect_head.eval()
    obj_detect_head.cuda()

    # reid
    reid_network = resnet50(pretrained=False, **siamese['cnn'])
    reid_network.load_state_dict(torch.load(tracktor['reid_network_weights']))
    reid_network.eval()
    reid_network.cuda()

    # tracktor
    if 'oracle' in tracktor:
        tracker = OracleTracker(obj_detect, reid_network, tracktor['tracker'],
                                tracktor['oracle'])
    else:
        print(tracktor['tracker'])
        tracker = Tracker(obj_detect, reid_network, tracktor['tracker'])

    print("[*] Beginning evaluation...")

    time_total = 0
    tracker.reset()
    now = time.time()

    cv2.namedWindow("test", cv2.WINDOW_NORMAL)
    cv2.resizeWindow("test", 800, 600)

    seq_name = 'MOT-2'
    video_file = osp.join(cfg.ROOT_DIR, 'video/' + seq_name + '.mp4')
    print("[*] Evaluating: {}".format(video_file))

    # ===============================================
    # transform each video frame to main frame format
    # ===============================================
    transforms = Compose(
        [ToTensor(),
         Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])

    vdo = cv2.VideoCapture()
    vdo.open(video_file)
    im_width = int(vdo.get(cv2.CAP_PROP_FRAME_WIDTH))
    im_height = int(vdo.get(cv2.CAP_PROP_FRAME_HEIGHT))
    area = 0, 0, im_width, im_height

    print("===video frame's area:", area)
    # video = cv2.VideoCapture(video_file)
    # if not video.isOpened():
    #     print("error opening video stream or file!")

    # while (video.isOpened()):
    while vdo.grab():
        _, frame = vdo.retrieve()

        # success, frame = video.read()
        # if not success:
        #     break
        # print(frame)  # (540, 960, 3)

        blobs, im_scales = test._get_blobs(frame)
        data = blobs['data']

        # print(data.shape)  # (1, 562, 1000, 3)
        # print(im_scales)  # [1.04166667]

        sample = {}
        sample['image'] = cv2.resize(frame, (0, 0),
                                     fx=im_scales,
                                     fy=im_scales,
                                     interpolation=cv2.INTER_NEAREST)
        sample['im_path'] = video_file
        sample['data'] = torch.from_numpy(data).unsqueeze(0)
        im_info = np.array([data.shape[1], data.shape[2], im_scales[0]],
                           dtype=np.float32)
        sample['im_info'] = torch.from_numpy(im_info).unsqueeze(0)

        # convert to siamese input
        frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        frame = Image.fromarray(frame)
        frame = transforms(frame)
        # print(frame.shape)  # torch.Size([3, 540, 960])

        sample['app_data'] = frame.unsqueeze(0).unsqueeze(0)
        # print(sample['app_data'].size())  # torch.Size([1, 1, 3, 540, 960])

        # additional info
        # sample['gt'] = {}
        # sample['vis'] = {}
        # sample['dets'] = []

        # print('frame begin')
        # print(sample)
        # print('frame end')

        tracker.step(sample)
        tracker.show_tracks(area)

    video.release()
    print('the current video' + video_file + ' is done')

    results = tracker.get_results()
    time_total += time.time() - now
    print("[*] Tracks found: {}".format(len(results)))
    print("[*] Time needed for {} evaluation: {:.3f} s".format(
        seq_name,
        time.time() - now))

    # print('this is : ' + tracktor['dataset'])

    # for sequence in Datasets(tracktor['dataset']):
    # #for sequence in Datasets('MOT-02'):
    #
    #     print('sequence---------', type(sequence), len(sequence))
    #
    #     tracker.reset()
    #     now = time.time()
    #
    #     print("[*] Evaluating: {}".format(sequence))
    #
    #     data_loader = DataLoader(sequence, batch_size=1, shuffle=False)
    #     for i, frame in enumerate(data_loader):
    #
    #         print('frame begin')
    #         print(frame)
    #         print('frame end')
    #
    #         if i >= len(sequence) * tracktor['frame_split'][0] and i <= len(sequence) * tracktor['frame_split'][1]:
    #
    #             tracker.step(frame)
    #     results = tracker.get_results()
    #
    #
    #     time_total += time.time() - now
    #
    #     print("[*] Tracks found: {}".format(len(results)))
    #     print("[*] Time needed for {} evaluation: {:.3f} s".format(sequence, time.time() - now))
    #
    #     if tracktor['interpolate']:
    #         results = interpolate(results)
    #
    #     plot_tracks(sequence, results)
    #     sequence.write_results(results, osp.join(output_dir))
    #
    #     if tracktor['write_images']:
    #        plot_sequence(results, sequence, osp.join(output_dir, tracktor['dataset'], str(sequence)))
    print("[*] Evaluation for all sets (without image generation): {:.3f} s".
          format(time_total))
コード例 #6
0
def main(tracktor, reid, _config, _log, _run):
    sacred.commands.print_config(_run)

    # set all seeds
    torch.manual_seed(tracktor['seed'])
    torch.cuda.manual_seed(tracktor['seed'])
    np.random.seed(tracktor['seed'])
    torch.backends.cudnn.deterministic = True

    output_dir = osp.join(get_output_dir(tracktor['module_name']),
                          tracktor['name'])
    sacred_config = osp.join(output_dir, 'sacred_config.yaml')

    if not osp.exists(output_dir):
        os.makedirs(output_dir)
    with open(sacred_config, 'w') as outfile:
        yaml.dump(_config, outfile, default_flow_style=False)

    ##########################
    # Initialize the modules #
    ##########################

    # object detection
    _log.info("Initializing object detector.")

    obj_detect = FRCNN_FPN(num_classes=2)
    obj_detect.load_state_dict(
        torch.load(_config['tracktor']['obj_detect_model'],
                   map_location=lambda storage, loc: storage))

    obj_detect.eval()
    obj_detect.cuda()

    # reid
    reid_network = resnet50(pretrained=False, **reid['cnn'])
    reid_network.load_state_dict(
        torch.load(tracktor['reid_weights'],
                   map_location=lambda storage, loc: storage))
    reid_network.eval()
    reid_network.cuda()

    # motion network
    motion_network = None
    if tracktor['tracker']['motion_model_enabled'] and not tracktor['motion'][
            'use_cva_model']:
        motion_network = eval(
            tracktor['motion']['model'])(**tracktor['motion']['model_args'])
        motion_network.load_state_dict(
            torch.load(tracktor['motion']['network_weights'])['model'])
        motion_network.eval().cuda()

    # tracktor
    if 'oracle' in tracktor:
        tracker = OracleTracker(obj_detect, reid_network, tracktor['tracker'],
                                tracktor['oracle'])
    else:
        tracker = Tracker(obj_detect, reid_network, motion_network,
                          tracktor['tracker'], tracktor['motion'], 2)

    time_total = 0
    num_frames = 0
    mot_accums = []
    dataset = Datasets(tracktor['dataset'])
    for seq in dataset:
        tracker.reset()
        _log.info(f"Tracking: {seq}")
        data_loader = DataLoader(seq, batch_size=1, shuffle=False)

        start = time.time()
        all_mm_times = []
        all_warp_times = []
        for i, frame in enumerate(tqdm(data_loader)):
            if len(seq) * tracktor['frame_split'][0] <= i <= len(
                    seq) * tracktor['frame_split'][1]:
                with torch.no_grad():
                    mm_time, warp_time = tracker.step(frame)
                    if mm_time is not None:
                        all_mm_times.append(mm_time)
                    if warp_time is not None:
                        all_warp_times.append(warp_time)
                num_frames += 1
        results = tracker.get_results()

        time_total += time.time() - start

        _log.info(f"Tracks found: {len(results)}")
        _log.info(f"Runtime for {seq}: {time.time() - start :.1f} s.")
        _log.info(
            f"Average FPS for {seq}: {len(data_loader) / (time.time() - start) :.3f}"
        )
        _log.info(
            f"Average MM time for {seq}: {float(np.array(all_mm_times).mean()) :.3f} s"
        )
        if all_warp_times:
            _log.info(
                f"Average warp time for {seq}: {float(np.array(all_warp_times).mean()) :.3f} s"
            )

        if tracktor['interpolate']:
            results = interpolate(results)

        if 'semi_online' in tracktor and tracktor['semi_online']:
            for i, track in results.items():
                for frame in sorted(track, reverse=True):
                    if track[frame][5] == 0:
                        break
                    del track[frame]

        if tracktor['write_images']:
            plot_sequence(results, seq,
                          osp.join(output_dir, tracktor['dataset'], str(seq)),
                          tracktor['tracker']['plot_mm'])

        if seq.no_gt:
            _log.info(f"No GT data for evaluation available.")
        else:
            mot_accums.append(get_mot_accum(results, seq))

        _log.info(f"Writing predictions to: {output_dir}")
        seq.write_results(results, output_dir)

    _log.info(
        f"Tracking runtime for all sequences (without evaluation or image writing): "
        f"{time_total:.2f} s for {num_frames} frames ({num_frames / time_total:.2f} Hz)"
    )
    if mot_accums:
        evaluate_mot_accums(mot_accums,
                            [str(s) for s in dataset if not s.no_gt],
                            generate_overall=True)
コード例 #7
0
num_frames = 0
mot_accums = []

dataset = CustomSequence(cfg=tracktor)
tracker.reset()

start = time.time()
print(f"Tracking: {dataset}")

for i, frame in enumerate(tqdm(dataset)):
    if len(dataset) * tracktor['frame_split'][0] <= i <= len(
            dataset) * tracktor['frame_split'][1]:
        with torch.no_grad():
            tracker.step(frame)
        num_frames += 1
results = tracker.get_results()

time_total += time.time() - start

print(f"Tracks found: {len(results)}")
print(f"Runtime for {dataset}: {time.time() - start :.2f} s.")

if tracktor['interpolate']:
    results = interpolate(results)

if dataset.no_gt:
    print(f"No GT data for evaluation available.")
else:
    mot_accums.append(get_mot_accum(results, dataset))

print(f"Writing predictions to: {output_dir}")
コード例 #8
0
def main(tracktor, reid, _config, _log, _run):
    sacred.commands.print_config(_run)

    # set all seeds
    torch.manual_seed(tracktor['seed'])
    torch.cuda.manual_seed(tracktor['seed'])
    np.random.seed(tracktor['seed'])
    torch.backends.cudnn.deterministic = True

    output_dir = osp.join(get_output_dir(tracktor['module_name']), tracktor['name'])
    sacred_config = osp.join(output_dir, 'sacred_config.yaml')

    if not osp.exists(output_dir):
        os.makedirs(output_dir)
    with open(sacred_config, 'w') as outfile:
        yaml.dump(_config, outfile, default_flow_style=False)

    ##########################
    # Initialize the modules #
    ##########################

    # object detection
    _log.info("Initializing object detector.")

    obj_detect = FRCNN_FPN(num_classes=2)
    obj_detect.load_state_dict(torch.load(_config['tracktor']['obj_detect_model'],
                               map_location=lambda storage, loc: storage))

    obj_detect.eval()
    obj_detect.cuda()

    # reid
    reid_network = resnet50(pretrained=False, **reid['cnn'])
    reid_network.load_state_dict(torch.load(tracktor['reid_weights'],
                                 map_location=lambda storage, loc: storage))
    reid_network.eval()
    reid_network.cuda()

    # tracktor
    if 'oracle' in tracktor:
        tracker = OracleTracker(obj_detect, reid_network, tracktor['tracker'], tracktor['oracle'])
    else:
        tracker = Tracker(obj_detect, reid_network, tracktor['tracker'])

    time_total = 0
    num_frames = 0
    mot_accums = []

    # Data transform
    normalize_mean=[0.485, 0.456, 0.406]
    normalize_std=[0.229, 0.224, 0.225]
    # dataset = Datasets(tracktor['dataset'])
    transforms = ToTensor()
    # transforms = Compose([ToTensor(), Normalize(normalize_mean,
    #                                             normalize_std)])

    tracker.reset()
    # tracker.public_detections=False

    start = time.time()

    _log.info(f"Tracking: video")

    # Load video and annotations
    cap = cv2.VideoCapture("/home/yc3390/camera_detection_demo/data/prid2011_videos/test_b_1min_1min.mp4")
    with open("/home/yc3390/camera_detection_demo/data/prid2011_videos/anno_b.pkl", 'rb') as f:
        gts = pk.load(f)

    det_file = "/data/yc3390/tracktor_output/output/tracktor/MOT17/Tracktor++/Video-result_ReID.txt"
    # with open("/data/yc3390/tracktor_output/output/tracktor/MOT17/Tracktor++/Video-result_ReID.pkl", 'rb') as f:
    #     dts = pk.load(f)

    #     for dt in dts:
    #         if len(dt['boxes'][0]):
    #             for i in range(len(dt['boxes'])):
    #                 dt['boxes'][i][-1] = -1
    offset = 25 * 60
    dets = {}
    for i in range(1, offset+1):
        dets[i] = []
    assert osp.exists(det_file)
    with open(det_file, "r") as inf:
        reader = csv.reader(inf, delimiter=',')
        for row in reader:
            x1 = float(row[2]) - 1
            y1 = float(row[3]) - 1
            # This -1 accounts for the width (width of 1 x1=x2)
            x2 = x1 + float(row[4]) - 1
            y2 = y1 + float(row[5]) - 1
            score = float(row[6])
            bb = np.array([x1,y1,x2,y2], dtype=np.float32)
            dets[int(float(row[0]))].append(bb)
    frame_count = offset

    while True:
        ret, image = cap.read()
        if not ret:
            break
        # BGR to RGB
        image = Image.fromarray(image[..., ::-1])
        image = transforms(image)[None, ...]

        # Detection
        # if frame_count in gts.keys():
        #     frames = 
        blob = {"dets" : torch.Tensor([dets[i]]), "img" : image}
        tracker.step(blob)
        frame_count += 1
        print("Finished ", frame_count, output_dir, image.shape)
        
    results = tracker.get_results()

    time_total += time.time() - start

    _log.info(f"Tracks found: {len(results)}")
    _log.info(f"Runtime for video: {time.time() - start :.1f} s.")

    if tracktor['interpolate']:
        results = interpolate(results)

    if True:
        _log.info(f"No GT data for evaluation available.")
    else:
        mot_accums.append(get_mot_accum(results, seq))

    _log.info(f"Writing predictions to: {output_dir}")
    write_results(results, output_dir)
コード例 #9
0
def main(tracktor, reid, _config, _log, _run):
    sacred.commands.print_config(_run)

    # set all seeds
    torch.manual_seed(tracktor['seed'])
    torch.cuda.manual_seed(tracktor['seed'])
    np.random.seed(tracktor['seed'])
    torch.backends.cudnn.deterministic = True

    output_dir = osp.join(get_output_dir(tracktor['module_name']),
                          tracktor['name'])
    sacred_config = osp.join(output_dir, 'sacred_config.yaml')

    if not osp.exists(output_dir):
        os.makedirs(output_dir)
    with open(sacred_config, 'w') as outfile:
        yaml.dump(_config, outfile, default_flow_style=False)

    ##########################
    # Initialize the modules #
    ##########################

    _log.info("Initializing object detector.")

    # object detection
    obj_detect = FRCNN_FPN(num_classes=2, correlation_head=CorrelationHead())
    obj_detect_model = torch.load(_config['tracktor']['obj_detect_model'],
                                  map_location=lambda storage, loc: storage)
    correlation_weights = torch.load(
        _config['tracktor']['correlation_weights'],
        map_location=lambda storage, loc: storage)
    for k in correlation_weights:
        obj_detect_model.update(
            {"correlation_head." + k: correlation_weights[k]})
    obj_detect.load_state_dict(obj_detect_model)
    obj_detect.eval()
    obj_detect.cuda()

    # reid
    reid_network = resnet50(pretrained=False, **reid['cnn'])
    reid_network.load_state_dict(
        torch.load(tracktor['reid_weights'],
                   map_location=lambda storage, loc: storage))
    reid_network.eval()
    reid_network.cuda()

    # tracktor
    if 'oracle' in tracktor:
        tracker = OracleTracker(obj_detect, reid_network, tracktor['tracker'],
                                tracktor['oracle'])
    else:
        tracker = Tracker(obj_detect, reid_network, tracktor['tracker'])

    time_total = 0
    num_frames = 0
    mot_accums = []
    dataset = Datasets(tracktor['dataset'])
    for seq in dataset:
        tracker.reset()

        start = time.time()

        _log.info(f"Tracking: {seq}")

        data_loader = DataLoader(seq, batch_size=1, shuffle=False)
        for i, frame in enumerate(tqdm(data_loader)):
            if len(seq) * tracktor['frame_split'][0] <= i <= len(
                    seq) * tracktor['frame_split'][1]:
                with torch.no_grad():
                    tracker.step(frame)
                num_frames += 1
        results = tracker.get_results()

        time_total += time.time() - start

        _log.info(f"Tracks found: {len(results)}")
        _log.info(f"Runtime for {seq}: {time.time() - start :.2f} s.")

        if tracktor['interpolate']:
            results = interpolate(results)

        if seq.no_gt:
            _log.info(f"No GT data for evaluation available.")
        else:
            mot_accums.append(get_mot_accum(results, seq))

        _log.info(f"Writing predictions to: {output_dir}")
        seq.write_results(results, output_dir)

        if tracktor['write_images']:
            plot_sequence(results, seq,
                          osp.join(output_dir, tracktor['dataset'], str(seq)))

        score_killed_tracks = tracker.get_score_killed_tracks()
        _log.info(f"Score Killed Tracks: ({len(score_killed_tracks)})")
        for kill in score_killed_tracks:
            _log.info(
                f"Track [ {kill['id']:3d} ] killed in frame [ {kill['frame']:3d} ]"
            )

        nms_killed_tracks = tracker.get_nms_killed_tracks()
        _log.info(f"NMS Killed Tracks ({len(nms_killed_tracks)}):")
        for kill in nms_killed_tracks:
            _log.info(
                f"Track [ {kill['id']:3d} ] killed in frame [ {kill['frame']:3d} ]"
            )

    _log.info(
        f"Tracking runtime for all sequences (without evaluation or image writing): "
        f"{time_total:.2f} s for {num_frames} frames ({num_frames / time_total:.2f} Hz)"
    )
    if mot_accums:
        evaluate_mot_accums(mot_accums,
                            [str(s) for s in dataset if not s.no_gt],
                            generate_overall=True)
コード例 #10
0
ファイル: test_tracktor.py プロジェクト: M20190649/TFG-1
def main(tracktor, reid, _config, _log, _run):
    sacred.commands.print_config(_run)

    # set all seeds
    torch.manual_seed(tracktor['seed'])
    torch.cuda.manual_seed(tracktor['seed'])
    np.random.seed(tracktor['seed'])
    torch.backends.cudnn.deterministic = True

    output_dir = osp.join(get_output_dir(tracktor['module_name']),
                          tracktor['name'])
    sacred_config = osp.join(output_dir, 'sacred_config.yaml')

    if not osp.exists(output_dir):
        os.makedirs(output_dir)
    with open(sacred_config, 'w') as outfile:
        yaml.dump(_config, outfile, default_flow_style=False)

    ##########################
    # Initialize the modules #
    ##########################

    # object detection
    _log.info("Initializing object detector.")

    obj_detect = FRCNN_FPN(num_classes=2)
    obj_detect.load_state_dict(
        torch.load(_config['tracktor']['obj_detect_model'],
                   map_location=lambda storage, loc: storage))

    obj_detect.eval()
    obj_detect.cuda()

    # reid
    reid_network = resnet50(pretrained=False, **reid['cnn'])
    reid_network.load_state_dict(
        torch.load(tracktor['reid_weights'],
                   map_location=lambda storage, loc: storage))
    reid_network.eval()
    reid_network.cuda()

    # tracktor
    if 'oracle' in tracktor:
        tracker = OracleTracker(obj_detect, reid_network, tracktor['tracker'],
                                tracktor['oracle'])
    else:
        tracker = Tracker(obj_detect, reid_network, tracktor['tracker'])

    time_total = 0
    num_frames = 0
    mot_accums = []
    dataset = Datasets(tracktor['dataset'])

    for seq in dataset:

        tracker.reset()

        start = time.time()

        _log.info(f"Tracking: {seq}")

        data_loader = DataLoader(seq, batch_size=1, shuffle=False)
        for i, frame in enumerate(tqdm(data_loader)):
            if len(seq) * tracktor['frame_split'][0] <= i <= len(
                    seq) * tracktor['frame_split'][1]:
                tracker.step(frame)
                num_frames += 1
        results = tracker.get_results()

        time_total += time.time() - start

        _log.info(f"Tracks found: {len(results)}")
        _log.info(f"Runtime for {seq}: {time.time() - start :.1f} s.")

        if tracktor['interpolate']:
            results = interpolate(results)

        if seq.no_gt:
            _log.info(f"No GT data for evaluation available.")
        else:
            mot_accums.append(get_mot_accum(results, seq))

        _log.info(f"Writing predictions to: {output_dir}")
        seq.write_results(results, output_dir)

        if tracktor['write_images']:
            plot_sequence(results, seq,
                          osp.join(output_dir, tracktor['dataset'], str(seq)))

            img_array = []
            dir = osp.join(output_dir, tracktor['dataset'], str(seq), "*.jpg")
            files = glob.glob(dir)
            sorted_files = natsorted(files)

            for filename in sorted_files:
                img = cv2.imread(filename)
                height, width, layers = img.shape
                size = (width, height)
                img_array.append(img)

            out = cv2.VideoWriter(
                osp.join(output_dir, tracktor['dataset'],
                         str(seq), "result_video.avi"),
                cv2.VideoWriter_fourcc(*'DIVX'), 10, size)

            for i in range(len(img_array)):
                out.write(img_array[i])
            out.release()

    _log.info(
        f"Tracking runtime for all sequences (without evaluation or image writing): "
        f"{time_total:.1f} s ({num_frames / time_total:.1f} Hz)")
    if mot_accums:
        evaluate_mot_accums(mot_accums,
                            [str(s) for s in dataset if not s.no_gt],
                            generate_overall=True)
コード例 #11
0
def main(tracktor, reid, _config, _log, _run):
    sacred.commands.print_config(_run)

    # set all seeds
    torch.manual_seed(tracktor['seed'])
    torch.cuda.manual_seed(tracktor['seed'])
    np.random.seed(tracktor['seed'])
    torch.backends.cudnn.deterministic = True

    output_dir = osp.join(get_output_dir(tracktor['module_name']), tracktor['name'])
    sacred_config = osp.join(output_dir, 'sacred_config.yaml')

    if not osp.exists(output_dir):
        os.makedirs(output_dir)
    with open(sacred_config, 'w') as outfile:
        yaml.dump(_config, outfile, default_flow_style=False)

    ##########################
    # Initialize the modules #
    ##########################

    # object detection
    _log.info("Initializing object detector.")
    use_masks = _config['tracktor']['tracker']['use_masks']
    mask_model = Mask_RCNN(num_classes=2)
    fast_model = FRCNN_FPN(num_classes=2)
    fast_model.load_state_dict(torch.load(_config['tracktor']['fast_rcnn_model'],
                               map_location=lambda storage, loc: storage))
    if(use_masks):

      mask_model.load_state_dict(torch.load(_config['tracktor']['mask_rcnn_model'],
                               map_location=lambda storage, loc: storage)['model_state_dict'])
      mask_model.eval()
      mask_model.cuda()

    fast_model.eval()
    fast_model.cuda()

    # reid
    reid_network = resnet50(pretrained=False, **reid['cnn'])
    reid_network.load_state_dict(torch.load(tracktor['reid_weights'],
                                 map_location=lambda storage, loc: storage))
    reid_network.eval()
    reid_network.cuda()

    # tracktor
    if 'oracle' in tracktor:
        tracker = OracleTracker(fast_model, reid_network, tracktor['tracker'], tracktor['oracle'])
    else:
        tracker = Tracker(fast_model, reid_network, tracktor['tracker'], mask_model)

    time_total = 0
    num_frames = 0
    mot_accums = []
    dataset = Datasets(tracktor['dataset'])
    for seq in dataset:
        num_frames = 0
        tracker.reset()

        start = time.time()

        _log.info(f"Tracking: {seq}")

        data_loader = DataLoader(seq, batch_size=1, shuffle=False)
        if tracktor['write_images'] and use_masks:
            print("[*] Plotting image to {}".format(osp.join(output_dir, tracktor['dataset'])))


        for i, frame in enumerate(tqdm(data_loader)):
            if len(seq) * tracktor['frame_split'][0] <= i <= len(seq) * tracktor['frame_split'][1]:
                tracker.step(frame)
                if tracktor['write_images'] and use_masks:
                  result = tracker.get_results()
                  masks = tracker.get_masks()
                  plot_sequence(result, masks, seq, num_frames, osp.join(output_dir, tracktor['dataset'], str(seq)), plot_masks = True)
                num_frames += 1

        results = tracker.get_results()
        import matplotlib.pyplot as plt

        time_total += time.time() - start

        _log.info(f"Tracks found: {len(results)}")
        _log.info(f"Runtime for {seq}: {time.time() - start :.1f} s.")

        if tracktor['interpolate']:
            results = interpolate(results)

        if seq.no_gt:
            _log.info(f"No GT data for evaluation available.")
        else:
            mot_accums.append(get_mot_accum(results, seq))

        _log.info(f"Writing predictions to: {output_dir}")
        seq.write_results(results, output_dir)


    _log.info(f"Tracking runtime for all sequences (without evaluation or image writing): "
              f"{time_total:.1f} s ({num_frames / time_total:.1f} Hz)")
    if mot_accums:
        evaluate_mot_accums(mot_accums, [str(s) for s in dataset if not s.no_gt], generate_overall=True)