def main(tracktor, reid, _config, _log, _run): sacred.commands.print_config(_run) # set all seeds torch.manual_seed(tracktor['seed']) torch.cuda.manual_seed(tracktor['seed']) np.random.seed(tracktor['seed']) torch.backends.cudnn.deterministic = True output_dir = osp.join(get_output_dir(tracktor['module_name']), tracktor['name'], tracktor['output_subdir']) sacred_config = osp.join(output_dir, 'sacred_config.yaml') if not osp.exists(output_dir): os.makedirs(output_dir) with open(sacred_config, 'w') as outfile: yaml.dump(_config, outfile, default_flow_style=False) ########################## # Initialize the modules # ########################## # object detection _log.info("Initializing object detector.") obj_detect = FRCNN_FPN(num_classes=2).to(device) obj_detect.load_state_dict( torch.load(_config['tracktor']['obj_detect_model'], map_location=lambda storage, loc: storage)) obj_detect.eval() # reid reid_network = resnet50(pretrained=False, **reid['cnn']).to(device) reid_network.load_state_dict( torch.load(tracktor['reid_weights'], map_location=lambda storage, loc: storage)) reid_network.eval() # tracktor if 'oracle' in tracktor: tracker = OracleTracker(obj_detect, reid_network, tracktor['tracker'], tracktor['oracle']) else: tracker = Tracker(obj_detect, reid_network, tracktor['tracker']) time_total = 0 num_frames = 0 mot_accums = [] dataset = Datasets(tracktor['dataset']) for seq in dataset: tracker.reset() start = time.time() _log.info(f"Tracking: {seq}") data_loader = DataLoader(seq, batch_size=1, shuffle=False) for i, frame in enumerate(tqdm(data_loader)): if len(seq) * tracktor['frame_split'][0] <= i <= len( seq) * tracktor['frame_split'][1]: tracker.step(frame, i) num_frames += 1 results = tracker.get_results() time_total += time.time() - start _log.info(f"Tracks found: {len(results)}") _log.info(f"Runtime for {seq}: {time.time() - start :.1f} s.") if tracktor['interpolate']: results = interpolate(results) if seq.no_gt: _log.info(f"No GT data for evaluation available.") else: mot_accums.append(get_mot_accum(results, seq)) _log.info(f"Writing predictions to: {output_dir}") seq.write_results(results, output_dir) if tracktor['write_images']: plot_sequence(results, seq, osp.join(output_dir, tracktor['dataset'], str(seq))) _log.info( f"Tracking runtime for all sequences (without evaluation or image writing): " f"{time_total:.1f} s ({num_frames / time_total:.1f} Hz)") if mot_accums: summary = evaluate_mot_accums(mot_accums, [str(s) for s in dataset if not s.no_gt], generate_overall=True) summary.to_pickle( "output/finetuning_results/results_{}_{}_{}_{}_{}.pkl".format( tracktor['output_subdir'], tracktor['tracker']['finetuning']['max_displacement'], tracktor['tracker']['finetuning']['batch_size'], tracktor['tracker']['finetuning']['learning_rate'], tracktor['tracker']['finetuning']['iterations']))
def main(tracktor, reid, _config, _log, _run): sacred.commands.print_config(_run) # set all seeds torch.manual_seed(tracktor['seed']) torch.cuda.manual_seed(tracktor['seed']) np.random.seed(tracktor['seed']) torch.backends.cudnn.deterministic = True output_dir = osp.join(get_output_dir(tracktor['module_name']), tracktor['name']) sacred_config = osp.join(output_dir, 'sacred_config.yaml') if not osp.exists(output_dir): os.makedirs(output_dir) with open(sacred_config, 'w') as outfile: yaml.dump(_config, outfile, default_flow_style=False) ########################## # Initialize the modules # ########################## # object detection _log.info("Initializing object detector.") obj_detect = FRCNN_FPN(num_classes=2) obj_detect.load_state_dict(torch.load(_config['tracktor']['obj_detect_model'], map_location=lambda storage, loc: storage)) obj_detect.eval() obj_detect.cuda() # reid reid_network = resnet50(pretrained=False, **reid['cnn']) reid_network.load_state_dict(torch.load(tracktor['reid_weights'], map_location=lambda storage, loc: storage)) reid_network.eval() reid_network.cuda() # neural motion model vis_model = VisSimpleReID() motion_model = MotionModelV3(vis_model) motion_model.load_state_dict(torch.load('output/motion/finetune_motion_model_v3.pth')) motion_model.eval() motion_model.cuda() save_vis_results = False # tracktor if 'oracle' in tracktor: tracker = OracleTracker(obj_detect, reid_network, tracktor['tracker'], tracktor['oracle']) else: # tracker = Tracker(obj_detect, reid_network, tracktor['tracker']) tracker = TrackerNeuralMM(obj_detect, reid_network, motion_model, tracktor['tracker'], save_vis_results=save_vis_results, vis_model=None) time_total = 0 num_frames = 0 mot_accums = [] dataset = Datasets(tracktor['dataset'], {'use_val_split':True}) for seq in dataset: tracker.reset() start = time.time() _log.info(f"Tracking: {seq}") data_loader = DataLoader(seq, batch_size=1, shuffle=False) for i, frame in enumerate(tqdm(data_loader)): if len(seq) * tracktor['frame_split'][0] <= i <= len(seq) * tracktor['frame_split'][1]: with torch.no_grad(): tracker.step(frame) num_frames += 1 results = tracker.get_results() time_total += time.time() - start _log.info(f"Tracks found: {len(results)}") _log.info(f"Runtime for {seq}: {time.time() - start :.1f} s.") if tracktor['interpolate']: results = interpolate(results) if seq.no_gt: _log.info(f"No GT data for evaluation available.") else: mot_accums.append(get_mot_accum(results, seq)) _log.info(f"Writing predictions to: {output_dir}") seq.write_results(results, output_dir) if save_vis_results: vis_results = tracker.get_vis_results() seq.write_vis_results(vis_results, output_dir) if tracktor['write_images']: plot_sequence(results, seq, osp.join(output_dir, tracktor['dataset'], str(seq))) _log.info(f"Tracking runtime for all sequences (without evaluation or image writing): " f"{time_total:.1f} s ({num_frames / time_total:.1f} Hz)") if mot_accums: evaluate_mot_accums(mot_accums, [str(s) for s in dataset if not s.no_gt], generate_overall=True)
def main(module_name, name, seed, obj_detect_models, reid_models, tracker, oracle, dataset, load_results, frame_range, interpolate, write_images, _config, _log, _run): sacred.commands.print_config(_run) # set all seeds torch.manual_seed(seed) torch.cuda.manual_seed(seed) np.random.seed(seed) torch.backends.cudnn.deterministic = True output_dir = osp.join(get_output_dir(module_name), name) sacred_config = osp.join(output_dir, 'sacred_config.yaml') if not osp.exists(output_dir): os.makedirs(output_dir) with open(sacred_config, 'w') as outfile: yaml.dump(copy.deepcopy(_config), outfile, default_flow_style=False) ########################## # Initialize the modules # ########################## # object detection _log.info("Initializing object detector(s).") obj_detects = [] for obj_detect_model in obj_detect_models: obj_detect = FRCNN_FPN(num_classes=2) obj_detect.load_state_dict( torch.load(obj_detect_model, map_location=lambda storage, loc: storage)) obj_detects.append(obj_detect) obj_detect.eval() if torch.cuda.is_available(): obj_detect.cuda() # reid _log.info("Initializing reID network(s).") reid_networks = [] for reid_model in reid_models: reid_cfg = os.path.join(os.path.dirname(reid_model), 'sacred_config.yaml') reid_cfg = yaml.safe_load(open(reid_cfg)) reid_network = ReIDNetwork_resnet50(pretrained=False, **reid_cfg['model_args']) reid_network.load_state_dict( torch.load(reid_model, map_location=lambda storage, loc: storage)) reid_network.eval() if torch.cuda.is_available(): reid_network.cuda() reid_networks.append(reid_network) # tracktor if oracle is not None: tracker = OracleTracker(obj_detect, reid_network, tracker, oracle) else: tracker = Tracker(obj_detect, reid_network, tracker) time_total = 0 num_frames = 0 mot_accums = [] dataset = Datasets(dataset) for seq, obj_detect, reid_network in zip(dataset, obj_detects, reid_networks): tracker.obj_detect = obj_detect tracker.reid_network = reid_network tracker.reset() _log.info(f"Tracking: {seq}") start_frame = int(frame_range['start'] * len(seq)) end_frame = int(frame_range['end'] * len(seq)) seq_loader = DataLoader( torch.utils.data.Subset(seq, range(start_frame, end_frame))) num_frames += len(seq_loader) results = {} if load_results: results = seq.load_results(output_dir) if not results: start = time.time() for frame_data in tqdm(seq_loader): with torch.no_grad(): tracker.step(frame_data) results = tracker.get_results() time_total += time.time() - start _log.info(f"Tracks found: {len(results)}") _log.info(f"Runtime for {seq}: {time.time() - start :.2f} s.") if interpolate: results = interpolate_tracks(results) _log.info(f"Writing predictions to: {output_dir}") seq.write_results(results, output_dir) if seq.no_gt: _log.info("No GT data for evaluation available.") else: mot_accums.append(get_mot_accum(results, seq_loader)) if write_images: plot_sequence(results, seq, osp.join(output_dir, str(dataset), str(seq)), write_images) if time_total: _log.info( f"Tracking runtime for all sequences (without evaluation or image writing): " f"{time_total:.2f} s for {num_frames} frames ({num_frames / time_total:.2f} Hz)" ) if mot_accums: _log.info("Evaluation:") evaluate_mot_accums(mot_accums, [str(s) for s in dataset if not s.no_gt], generate_overall=True)
def my_main(tracktor, siamese, _config): # set all seeds torch.manual_seed(tracktor['seed']) torch.cuda.manual_seed(tracktor['seed']) np.random.seed(tracktor['seed']) torch.backends.cudnn.deterministic = True output_dir = osp.join(get_output_dir(tracktor['module_name']), tracktor['name']) sacred_config = osp.join(output_dir, 'sacred_config.yaml') if not osp.exists(output_dir): os.makedirs(output_dir) with open(sacred_config, 'w') as outfile: yaml.dump(_config, outfile, default_flow_style=False) ########################## # Initialize the modules # ########################## # object detection print("[*] Building object detector") if tracktor['network'].startswith('frcnn'): # FRCNN from tracktor.frcnn import FRCNN from frcnn.model import config if _config['frcnn']['cfg_file']: config.cfg_from_file(_config['frcnn']['cfg_file']) if _config['frcnn']['set_cfgs']: config.cfg_from_list(_config['frcnn']['set_cfgs']) obj_detect = FRCNN(num_layers=101) obj_detect.create_architecture(2, tag='default', anchor_scales=config.cfg.ANCHOR_SCALES, anchor_ratios=config.cfg.ANCHOR_RATIOS) obj_detect.load_state_dict(torch.load(tracktor['obj_detect_weights'])) elif tracktor['network'].startswith('fpn'): # FPN from tracktor.fpn import FPN from fpn.model.utils import config config.cfg.TRAIN.USE_FLIPPED = False config.cfg.CUDA = True config.cfg.TRAIN.USE_FLIPPED = False checkpoint = torch.load(tracktor['obj_detect_weights']) if 'pooling_mode' in checkpoint.keys(): config.cfg.POOLING_MODE = checkpoint['pooling_mode'] set_cfgs = [ 'ANCHOR_SCALES', '[4, 8, 16, 32]', 'ANCHOR_RATIOS', '[0.5,1,2]' ] config.cfg_from_file(_config['tracktor']['obj_detect_config']) config.cfg_from_list(set_cfgs) obj_detect = FPN(('__background__', 'pedestrian'), 101, pretrained=False) obj_detect.create_architecture() obj_detect.load_state_dict(checkpoint['model']) else: raise NotImplementedError( f"Object detector type not known: {tracktor['network']}") pprint.pprint(config.cfg) obj_detect.eval() obj_detect.cuda() # reid reid_network = resnet50(pretrained=False, **siamese['cnn']) reid_network.load_state_dict(torch.load(tracktor['reid_network_weights'])) reid_network.eval() reid_network.cuda() # tracktor if 'oracle' in tracktor: tracker = OracleTracker(obj_detect, reid_network, tracktor['tracker'], tracktor['oracle']) else: tracker = Tracker(obj_detect, reid_network, tracktor['tracker']) print("[*] Beginning evaluation...") time_total = 0 for sequence in Datasets(tracktor['dataset']): tracker.reset() now = time.time() print("[*] Evaluating: {}".format(sequence)) data_loader = DataLoader(sequence, batch_size=1, shuffle=False) for i, frame in enumerate(data_loader): # frame_split = [0.0, 1.0] if i >= len(sequence) * tracktor['frame_split'][0] and i <= len( sequence) * tracktor['frame_split'][1]: tracker.step(frame) results = tracker.get_results() time_total += time.time() - now print("[*] Tracks found: {}".format(len(results))) print("[*] Time needed for {} evaluation: {:.3f} s".format( sequence, time.time() - now)) if tracktor['interpolate']: results = interpolate(results) sequence.write_results(results, osp.join(output_dir)) if tracktor['write_images']: plot_sequence( results, sequence, osp.join(output_dir, tracktor['dataset'], str(sequence))) print("[*] Evaluation for all sets (without image generation): {:.3f} s". format(time_total))
def my_main(tracktor, siamese, _config): # set all seeds torch.manual_seed(tracktor['seed']) torch.cuda.manual_seed(tracktor['seed']) np.random.seed(tracktor['seed']) torch.backends.cudnn.deterministic = True output_dir = osp.join(get_output_dir(tracktor['module_name']), tracktor['name']) sacred_config = osp.join(output_dir, 'sacred_config.yaml') if not osp.exists(output_dir): os.makedirs(output_dir) with open(sacred_config, 'w') as outfile: yaml.dump(_config, outfile, default_flow_style=False) ########################## # Initialize the modules # ########################## # object detection print("[*] Building object detector") print("tracktor['network'] is: ", tracktor['network']) if tracktor['network'].startswith('frcnn'): # FRCNN from tracktor.frcnn import FRCNN from frcnn.model import config if _config['frcnn']['cfg_file']: config.cfg_from_file(_config['frcnn']['cfg_file']) if _config['frcnn']['set_cfgs']: config.cfg_from_list(_config['frcnn']['set_cfgs']) obj_detect = FRCNN(num_layers=101) obj_detect.create_architecture(2, tag='default', anchor_scales=config.cfg.ANCHOR_SCALES, anchor_ratios=config.cfg.ANCHOR_RATIOS) state_dict_person = torch.load(tracktor['obj_detect_weights_person']) obj_detect.load_state_dict(state_dict_person) # loading head-detection model obj_detect_head = FRCNN(num_layers=101) obj_detect_head.create_architecture( 2, tag='default', anchor_scales=config.cfg.ANCHOR_SCALES, anchor_ratios=config.cfg.ANCHOR_RATIOS) state_dict_head = torch.load(tracktor['obj_detect_weights_head']) state_dict_head = my_transform(state_dict_head) obj_detect_head.load_state_dict(state_dict_head) elif tracktor['network'].startswith('mask-rcnn'): # MASK-RCNN pass elif tracktor['network'].startswith('fpn'): # FPN from tracktor.fpn import FPN from fpn.model.utils import config config.cfg.TRAIN.USE_FLIPPED = False config.cfg.CUDA = True config.cfg.TRAIN.USE_FLIPPED = False checkpoint = torch.load(tracktor['obj_detect_weights']) if 'pooling_mode' in checkpoint.keys(): config.cfg.POOLING_MODE = checkpoint['pooling_mode'] set_cfgs = [ 'ANCHOR_SCALES', '[4, 8, 16, 32]', 'ANCHOR_RATIOS', '[0.5,1,2]' ] config.cfg_from_file(_config['tracktor']['obj_detect_config']) config.cfg_from_list(set_cfgs) obj_detect = FPN(('__background__', 'pedestrian'), 101, pretrained=False) obj_detect.create_architecture() obj_detect.load_state_dict(checkpoint['model']) else: raise NotImplementedError( f"Object detector type not known: {tracktor['network']}") pprint.pprint(config.cfg) obj_detect.eval() obj_detect.cuda() obj_detect_head.eval() obj_detect_head.cuda() # reid reid_network = resnet50(pretrained=False, **siamese['cnn']) reid_network.load_state_dict(torch.load(tracktor['reid_network_weights'])) reid_network.eval() reid_network.cuda() # tracktor if 'oracle' in tracktor: tracker = OracleTracker(obj_detect, reid_network, tracktor['tracker'], tracktor['oracle']) else: print(tracktor['tracker']) tracker = Tracker(obj_detect, reid_network, tracktor['tracker']) print("[*] Beginning evaluation...") time_total = 0 tracker.reset() now = time.time() cv2.namedWindow("test", cv2.WINDOW_NORMAL) cv2.resizeWindow("test", 800, 600) seq_name = 'MOT-2' video_file = osp.join(cfg.ROOT_DIR, 'video/' + seq_name + '.mp4') print("[*] Evaluating: {}".format(video_file)) # =============================================== # transform each video frame to main frame format # =============================================== transforms = Compose( [ToTensor(), Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) vdo = cv2.VideoCapture() vdo.open(video_file) im_width = int(vdo.get(cv2.CAP_PROP_FRAME_WIDTH)) im_height = int(vdo.get(cv2.CAP_PROP_FRAME_HEIGHT)) area = 0, 0, im_width, im_height print("===video frame's area:", area) # video = cv2.VideoCapture(video_file) # if not video.isOpened(): # print("error opening video stream or file!") # while (video.isOpened()): while vdo.grab(): _, frame = vdo.retrieve() # success, frame = video.read() # if not success: # break # print(frame) # (540, 960, 3) blobs, im_scales = test._get_blobs(frame) data = blobs['data'] # print(data.shape) # (1, 562, 1000, 3) # print(im_scales) # [1.04166667] sample = {} sample['image'] = cv2.resize(frame, (0, 0), fx=im_scales, fy=im_scales, interpolation=cv2.INTER_NEAREST) sample['im_path'] = video_file sample['data'] = torch.from_numpy(data).unsqueeze(0) im_info = np.array([data.shape[1], data.shape[2], im_scales[0]], dtype=np.float32) sample['im_info'] = torch.from_numpy(im_info).unsqueeze(0) # convert to siamese input frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) frame = Image.fromarray(frame) frame = transforms(frame) # print(frame.shape) # torch.Size([3, 540, 960]) sample['app_data'] = frame.unsqueeze(0).unsqueeze(0) # print(sample['app_data'].size()) # torch.Size([1, 1, 3, 540, 960]) # additional info # sample['gt'] = {} # sample['vis'] = {} # sample['dets'] = [] # print('frame begin') # print(sample) # print('frame end') tracker.step(sample) tracker.show_tracks(area) video.release() print('the current video' + video_file + ' is done') results = tracker.get_results() time_total += time.time() - now print("[*] Tracks found: {}".format(len(results))) print("[*] Time needed for {} evaluation: {:.3f} s".format( seq_name, time.time() - now)) # print('this is : ' + tracktor['dataset']) # for sequence in Datasets(tracktor['dataset']): # #for sequence in Datasets('MOT-02'): # # print('sequence---------', type(sequence), len(sequence)) # # tracker.reset() # now = time.time() # # print("[*] Evaluating: {}".format(sequence)) # # data_loader = DataLoader(sequence, batch_size=1, shuffle=False) # for i, frame in enumerate(data_loader): # # print('frame begin') # print(frame) # print('frame end') # # if i >= len(sequence) * tracktor['frame_split'][0] and i <= len(sequence) * tracktor['frame_split'][1]: # # tracker.step(frame) # results = tracker.get_results() # # # time_total += time.time() - now # # print("[*] Tracks found: {}".format(len(results))) # print("[*] Time needed for {} evaluation: {:.3f} s".format(sequence, time.time() - now)) # # if tracktor['interpolate']: # results = interpolate(results) # # plot_tracks(sequence, results) # sequence.write_results(results, osp.join(output_dir)) # # if tracktor['write_images']: # plot_sequence(results, sequence, osp.join(output_dir, tracktor['dataset'], str(sequence))) print("[*] Evaluation for all sets (without image generation): {:.3f} s". format(time_total))
def main(tracktor, reid, _config, _log, _run): sacred.commands.print_config(_run) # set all seeds torch.manual_seed(tracktor['seed']) torch.cuda.manual_seed(tracktor['seed']) np.random.seed(tracktor['seed']) torch.backends.cudnn.deterministic = True output_dir = osp.join(get_output_dir(tracktor['module_name']), tracktor['name']) sacred_config = osp.join(output_dir, 'sacred_config.yaml') if not osp.exists(output_dir): os.makedirs(output_dir) with open(sacred_config, 'w') as outfile: yaml.dump(_config, outfile, default_flow_style=False) ########################## # Initialize the modules # ########################## # object detection _log.info("Initializing object detector.") obj_detect = FRCNN_FPN(num_classes=2) obj_detect.load_state_dict( torch.load(_config['tracktor']['obj_detect_model'], map_location=lambda storage, loc: storage)) obj_detect.eval() obj_detect.cuda() # reid reid_network = resnet50(pretrained=False, **reid['cnn']) reid_network.load_state_dict( torch.load(tracktor['reid_weights'], map_location=lambda storage, loc: storage)) reid_network.eval() reid_network.cuda() # motion network motion_network = None if tracktor['tracker']['motion_model_enabled'] and not tracktor['motion'][ 'use_cva_model']: motion_network = eval( tracktor['motion']['model'])(**tracktor['motion']['model_args']) motion_network.load_state_dict( torch.load(tracktor['motion']['network_weights'])['model']) motion_network.eval().cuda() # tracktor if 'oracle' in tracktor: tracker = OracleTracker(obj_detect, reid_network, tracktor['tracker'], tracktor['oracle']) else: tracker = Tracker(obj_detect, reid_network, motion_network, tracktor['tracker'], tracktor['motion'], 2) time_total = 0 num_frames = 0 mot_accums = [] dataset = Datasets(tracktor['dataset']) for seq in dataset: tracker.reset() _log.info(f"Tracking: {seq}") data_loader = DataLoader(seq, batch_size=1, shuffle=False) start = time.time() all_mm_times = [] all_warp_times = [] for i, frame in enumerate(tqdm(data_loader)): if len(seq) * tracktor['frame_split'][0] <= i <= len( seq) * tracktor['frame_split'][1]: with torch.no_grad(): mm_time, warp_time = tracker.step(frame) if mm_time is not None: all_mm_times.append(mm_time) if warp_time is not None: all_warp_times.append(warp_time) num_frames += 1 results = tracker.get_results() time_total += time.time() - start _log.info(f"Tracks found: {len(results)}") _log.info(f"Runtime for {seq}: {time.time() - start :.1f} s.") _log.info( f"Average FPS for {seq}: {len(data_loader) / (time.time() - start) :.3f}" ) _log.info( f"Average MM time for {seq}: {float(np.array(all_mm_times).mean()) :.3f} s" ) if all_warp_times: _log.info( f"Average warp time for {seq}: {float(np.array(all_warp_times).mean()) :.3f} s" ) if tracktor['interpolate']: results = interpolate(results) if 'semi_online' in tracktor and tracktor['semi_online']: for i, track in results.items(): for frame in sorted(track, reverse=True): if track[frame][5] == 0: break del track[frame] if tracktor['write_images']: plot_sequence(results, seq, osp.join(output_dir, tracktor['dataset'], str(seq)), tracktor['tracker']['plot_mm']) if seq.no_gt: _log.info(f"No GT data for evaluation available.") else: mot_accums.append(get_mot_accum(results, seq)) _log.info(f"Writing predictions to: {output_dir}") seq.write_results(results, output_dir) _log.info( f"Tracking runtime for all sequences (without evaluation or image writing): " f"{time_total:.2f} s for {num_frames} frames ({num_frames / time_total:.2f} Hz)" ) if mot_accums: evaluate_mot_accums(mot_accums, [str(s) for s in dataset if not s.no_gt], generate_overall=True)
num_frames = 0 mot_accums = [] dataset = CustomSequence(cfg=tracktor) tracker.reset() start = time.time() print(f"Tracking: {dataset}") for i, frame in enumerate(tqdm(dataset)): if len(dataset) * tracktor['frame_split'][0] <= i <= len( dataset) * tracktor['frame_split'][1]: with torch.no_grad(): tracker.step(frame) num_frames += 1 results = tracker.get_results() time_total += time.time() - start print(f"Tracks found: {len(results)}") print(f"Runtime for {dataset}: {time.time() - start :.2f} s.") if tracktor['interpolate']: results = interpolate(results) if dataset.no_gt: print(f"No GT data for evaluation available.") else: mot_accums.append(get_mot_accum(results, dataset)) print(f"Writing predictions to: {output_dir}")
def main(tracktor, reid, _config, _log, _run): sacred.commands.print_config(_run) # set all seeds torch.manual_seed(tracktor['seed']) torch.cuda.manual_seed(tracktor['seed']) np.random.seed(tracktor['seed']) torch.backends.cudnn.deterministic = True output_dir = osp.join(get_output_dir(tracktor['module_name']), tracktor['name']) sacred_config = osp.join(output_dir, 'sacred_config.yaml') if not osp.exists(output_dir): os.makedirs(output_dir) with open(sacred_config, 'w') as outfile: yaml.dump(_config, outfile, default_flow_style=False) ########################## # Initialize the modules # ########################## # object detection _log.info("Initializing object detector.") obj_detect = FRCNN_FPN(num_classes=2) obj_detect.load_state_dict(torch.load(_config['tracktor']['obj_detect_model'], map_location=lambda storage, loc: storage)) obj_detect.eval() obj_detect.cuda() # reid reid_network = resnet50(pretrained=False, **reid['cnn']) reid_network.load_state_dict(torch.load(tracktor['reid_weights'], map_location=lambda storage, loc: storage)) reid_network.eval() reid_network.cuda() # tracktor if 'oracle' in tracktor: tracker = OracleTracker(obj_detect, reid_network, tracktor['tracker'], tracktor['oracle']) else: tracker = Tracker(obj_detect, reid_network, tracktor['tracker']) time_total = 0 num_frames = 0 mot_accums = [] # Data transform normalize_mean=[0.485, 0.456, 0.406] normalize_std=[0.229, 0.224, 0.225] # dataset = Datasets(tracktor['dataset']) transforms = ToTensor() # transforms = Compose([ToTensor(), Normalize(normalize_mean, # normalize_std)]) tracker.reset() # tracker.public_detections=False start = time.time() _log.info(f"Tracking: video") # Load video and annotations cap = cv2.VideoCapture("/home/yc3390/camera_detection_demo/data/prid2011_videos/test_b_1min_1min.mp4") with open("/home/yc3390/camera_detection_demo/data/prid2011_videos/anno_b.pkl", 'rb') as f: gts = pk.load(f) det_file = "/data/yc3390/tracktor_output/output/tracktor/MOT17/Tracktor++/Video-result_ReID.txt" # with open("/data/yc3390/tracktor_output/output/tracktor/MOT17/Tracktor++/Video-result_ReID.pkl", 'rb') as f: # dts = pk.load(f) # for dt in dts: # if len(dt['boxes'][0]): # for i in range(len(dt['boxes'])): # dt['boxes'][i][-1] = -1 offset = 25 * 60 dets = {} for i in range(1, offset+1): dets[i] = [] assert osp.exists(det_file) with open(det_file, "r") as inf: reader = csv.reader(inf, delimiter=',') for row in reader: x1 = float(row[2]) - 1 y1 = float(row[3]) - 1 # This -1 accounts for the width (width of 1 x1=x2) x2 = x1 + float(row[4]) - 1 y2 = y1 + float(row[5]) - 1 score = float(row[6]) bb = np.array([x1,y1,x2,y2], dtype=np.float32) dets[int(float(row[0]))].append(bb) frame_count = offset while True: ret, image = cap.read() if not ret: break # BGR to RGB image = Image.fromarray(image[..., ::-1]) image = transforms(image)[None, ...] # Detection # if frame_count in gts.keys(): # frames = blob = {"dets" : torch.Tensor([dets[i]]), "img" : image} tracker.step(blob) frame_count += 1 print("Finished ", frame_count, output_dir, image.shape) results = tracker.get_results() time_total += time.time() - start _log.info(f"Tracks found: {len(results)}") _log.info(f"Runtime for video: {time.time() - start :.1f} s.") if tracktor['interpolate']: results = interpolate(results) if True: _log.info(f"No GT data for evaluation available.") else: mot_accums.append(get_mot_accum(results, seq)) _log.info(f"Writing predictions to: {output_dir}") write_results(results, output_dir)
def main(tracktor, reid, _config, _log, _run): sacred.commands.print_config(_run) # set all seeds torch.manual_seed(tracktor['seed']) torch.cuda.manual_seed(tracktor['seed']) np.random.seed(tracktor['seed']) torch.backends.cudnn.deterministic = True output_dir = osp.join(get_output_dir(tracktor['module_name']), tracktor['name']) sacred_config = osp.join(output_dir, 'sacred_config.yaml') if not osp.exists(output_dir): os.makedirs(output_dir) with open(sacred_config, 'w') as outfile: yaml.dump(_config, outfile, default_flow_style=False) ########################## # Initialize the modules # ########################## _log.info("Initializing object detector.") # object detection obj_detect = FRCNN_FPN(num_classes=2, correlation_head=CorrelationHead()) obj_detect_model = torch.load(_config['tracktor']['obj_detect_model'], map_location=lambda storage, loc: storage) correlation_weights = torch.load( _config['tracktor']['correlation_weights'], map_location=lambda storage, loc: storage) for k in correlation_weights: obj_detect_model.update( {"correlation_head." + k: correlation_weights[k]}) obj_detect.load_state_dict(obj_detect_model) obj_detect.eval() obj_detect.cuda() # reid reid_network = resnet50(pretrained=False, **reid['cnn']) reid_network.load_state_dict( torch.load(tracktor['reid_weights'], map_location=lambda storage, loc: storage)) reid_network.eval() reid_network.cuda() # tracktor if 'oracle' in tracktor: tracker = OracleTracker(obj_detect, reid_network, tracktor['tracker'], tracktor['oracle']) else: tracker = Tracker(obj_detect, reid_network, tracktor['tracker']) time_total = 0 num_frames = 0 mot_accums = [] dataset = Datasets(tracktor['dataset']) for seq in dataset: tracker.reset() start = time.time() _log.info(f"Tracking: {seq}") data_loader = DataLoader(seq, batch_size=1, shuffle=False) for i, frame in enumerate(tqdm(data_loader)): if len(seq) * tracktor['frame_split'][0] <= i <= len( seq) * tracktor['frame_split'][1]: with torch.no_grad(): tracker.step(frame) num_frames += 1 results = tracker.get_results() time_total += time.time() - start _log.info(f"Tracks found: {len(results)}") _log.info(f"Runtime for {seq}: {time.time() - start :.2f} s.") if tracktor['interpolate']: results = interpolate(results) if seq.no_gt: _log.info(f"No GT data for evaluation available.") else: mot_accums.append(get_mot_accum(results, seq)) _log.info(f"Writing predictions to: {output_dir}") seq.write_results(results, output_dir) if tracktor['write_images']: plot_sequence(results, seq, osp.join(output_dir, tracktor['dataset'], str(seq))) score_killed_tracks = tracker.get_score_killed_tracks() _log.info(f"Score Killed Tracks: ({len(score_killed_tracks)})") for kill in score_killed_tracks: _log.info( f"Track [ {kill['id']:3d} ] killed in frame [ {kill['frame']:3d} ]" ) nms_killed_tracks = tracker.get_nms_killed_tracks() _log.info(f"NMS Killed Tracks ({len(nms_killed_tracks)}):") for kill in nms_killed_tracks: _log.info( f"Track [ {kill['id']:3d} ] killed in frame [ {kill['frame']:3d} ]" ) _log.info( f"Tracking runtime for all sequences (without evaluation or image writing): " f"{time_total:.2f} s for {num_frames} frames ({num_frames / time_total:.2f} Hz)" ) if mot_accums: evaluate_mot_accums(mot_accums, [str(s) for s in dataset if not s.no_gt], generate_overall=True)
def main(tracktor, reid, _config, _log, _run): sacred.commands.print_config(_run) # set all seeds torch.manual_seed(tracktor['seed']) torch.cuda.manual_seed(tracktor['seed']) np.random.seed(tracktor['seed']) torch.backends.cudnn.deterministic = True output_dir = osp.join(get_output_dir(tracktor['module_name']), tracktor['name']) sacred_config = osp.join(output_dir, 'sacred_config.yaml') if not osp.exists(output_dir): os.makedirs(output_dir) with open(sacred_config, 'w') as outfile: yaml.dump(_config, outfile, default_flow_style=False) ########################## # Initialize the modules # ########################## # object detection _log.info("Initializing object detector.") obj_detect = FRCNN_FPN(num_classes=2) obj_detect.load_state_dict( torch.load(_config['tracktor']['obj_detect_model'], map_location=lambda storage, loc: storage)) obj_detect.eval() obj_detect.cuda() # reid reid_network = resnet50(pretrained=False, **reid['cnn']) reid_network.load_state_dict( torch.load(tracktor['reid_weights'], map_location=lambda storage, loc: storage)) reid_network.eval() reid_network.cuda() # tracktor if 'oracle' in tracktor: tracker = OracleTracker(obj_detect, reid_network, tracktor['tracker'], tracktor['oracle']) else: tracker = Tracker(obj_detect, reid_network, tracktor['tracker']) time_total = 0 num_frames = 0 mot_accums = [] dataset = Datasets(tracktor['dataset']) for seq in dataset: tracker.reset() start = time.time() _log.info(f"Tracking: {seq}") data_loader = DataLoader(seq, batch_size=1, shuffle=False) for i, frame in enumerate(tqdm(data_loader)): if len(seq) * tracktor['frame_split'][0] <= i <= len( seq) * tracktor['frame_split'][1]: tracker.step(frame) num_frames += 1 results = tracker.get_results() time_total += time.time() - start _log.info(f"Tracks found: {len(results)}") _log.info(f"Runtime for {seq}: {time.time() - start :.1f} s.") if tracktor['interpolate']: results = interpolate(results) if seq.no_gt: _log.info(f"No GT data for evaluation available.") else: mot_accums.append(get_mot_accum(results, seq)) _log.info(f"Writing predictions to: {output_dir}") seq.write_results(results, output_dir) if tracktor['write_images']: plot_sequence(results, seq, osp.join(output_dir, tracktor['dataset'], str(seq))) img_array = [] dir = osp.join(output_dir, tracktor['dataset'], str(seq), "*.jpg") files = glob.glob(dir) sorted_files = natsorted(files) for filename in sorted_files: img = cv2.imread(filename) height, width, layers = img.shape size = (width, height) img_array.append(img) out = cv2.VideoWriter( osp.join(output_dir, tracktor['dataset'], str(seq), "result_video.avi"), cv2.VideoWriter_fourcc(*'DIVX'), 10, size) for i in range(len(img_array)): out.write(img_array[i]) out.release() _log.info( f"Tracking runtime for all sequences (without evaluation or image writing): " f"{time_total:.1f} s ({num_frames / time_total:.1f} Hz)") if mot_accums: evaluate_mot_accums(mot_accums, [str(s) for s in dataset if not s.no_gt], generate_overall=True)
def main(tracktor, reid, _config, _log, _run): sacred.commands.print_config(_run) # set all seeds torch.manual_seed(tracktor['seed']) torch.cuda.manual_seed(tracktor['seed']) np.random.seed(tracktor['seed']) torch.backends.cudnn.deterministic = True output_dir = osp.join(get_output_dir(tracktor['module_name']), tracktor['name']) sacred_config = osp.join(output_dir, 'sacred_config.yaml') if not osp.exists(output_dir): os.makedirs(output_dir) with open(sacred_config, 'w') as outfile: yaml.dump(_config, outfile, default_flow_style=False) ########################## # Initialize the modules # ########################## # object detection _log.info("Initializing object detector.") use_masks = _config['tracktor']['tracker']['use_masks'] mask_model = Mask_RCNN(num_classes=2) fast_model = FRCNN_FPN(num_classes=2) fast_model.load_state_dict(torch.load(_config['tracktor']['fast_rcnn_model'], map_location=lambda storage, loc: storage)) if(use_masks): mask_model.load_state_dict(torch.load(_config['tracktor']['mask_rcnn_model'], map_location=lambda storage, loc: storage)['model_state_dict']) mask_model.eval() mask_model.cuda() fast_model.eval() fast_model.cuda() # reid reid_network = resnet50(pretrained=False, **reid['cnn']) reid_network.load_state_dict(torch.load(tracktor['reid_weights'], map_location=lambda storage, loc: storage)) reid_network.eval() reid_network.cuda() # tracktor if 'oracle' in tracktor: tracker = OracleTracker(fast_model, reid_network, tracktor['tracker'], tracktor['oracle']) else: tracker = Tracker(fast_model, reid_network, tracktor['tracker'], mask_model) time_total = 0 num_frames = 0 mot_accums = [] dataset = Datasets(tracktor['dataset']) for seq in dataset: num_frames = 0 tracker.reset() start = time.time() _log.info(f"Tracking: {seq}") data_loader = DataLoader(seq, batch_size=1, shuffle=False) if tracktor['write_images'] and use_masks: print("[*] Plotting image to {}".format(osp.join(output_dir, tracktor['dataset']))) for i, frame in enumerate(tqdm(data_loader)): if len(seq) * tracktor['frame_split'][0] <= i <= len(seq) * tracktor['frame_split'][1]: tracker.step(frame) if tracktor['write_images'] and use_masks: result = tracker.get_results() masks = tracker.get_masks() plot_sequence(result, masks, seq, num_frames, osp.join(output_dir, tracktor['dataset'], str(seq)), plot_masks = True) num_frames += 1 results = tracker.get_results() import matplotlib.pyplot as plt time_total += time.time() - start _log.info(f"Tracks found: {len(results)}") _log.info(f"Runtime for {seq}: {time.time() - start :.1f} s.") if tracktor['interpolate']: results = interpolate(results) if seq.no_gt: _log.info(f"No GT data for evaluation available.") else: mot_accums.append(get_mot_accum(results, seq)) _log.info(f"Writing predictions to: {output_dir}") seq.write_results(results, output_dir) _log.info(f"Tracking runtime for all sequences (without evaluation or image writing): " f"{time_total:.1f} s ({num_frames / time_total:.1f} Hz)") if mot_accums: evaluate_mot_accums(mot_accums, [str(s) for s in dataset if not s.no_gt], generate_overall=True)