def _augment_data(self, batch_generator, type=None): tfs = [] # transforms if self.Config.NORMALIZE_DATA: tfs.append( ZeroMeanUnitVarianceTransform_Standalone( per_channel=self.Config.NORMALIZE_PER_CHANNEL)) # Not used, because those transformations are not easily invertible with batchgenerators framework: # Mirroring would be the only easy test time DAug, but not trained with this DAug # if self.Config.TEST_TIME_DAUG: # from batchgenerators.transforms.spatial_transforms import SpatialTransform # center_dist_from_border = int(self.Config.INPUT_DIM[0] / 2.) - 10 # (144,144) -> 62 # tfs.append(SpatialTransform(self.Config.INPUT_DIM, # patch_center_dist_from_border=center_dist_from_border, # do_elastic_deform=True, alpha=(90., 120.), sigma=(9., 11.), # do_rotation=True, angle_x=(-0.8, 0.8), angle_y=(-0.8, 0.8), # angle_z=(-0.8, 0.8), # do_scale=True, scale=(0.9, 1.5), border_mode_data='constant', # border_cval_data=0, # order_data=3, # border_mode_seg='constant', border_cval_seg=0, order_seg=0, random_crop=True)) # tfs.append(ResampleTransform(zoom_range=(0.5, 1))) # tfs.append(GaussianNoiseTransform(noise_variance=(0, 0.05))) # tfs.append(ContrastAugmentationTransform(contrast_range=(0.7, 1.3), preserve_range=True, per_channel=False)) # tfs.append(BrightnessMultiplicativeTransform(multiplier_range=(0.7, 1.3), per_channel=False)) tfs.append(NumpyToTensor(keys=["data", "seg"], cast_to="float")) batch_gen = SingleThreadedAugmenter(batch_generator, Compose(tfs)) return batch_gen
def _augment_data(self, batch_generator, type=None): tfs = [] if self.Config.NORMALIZE_DATA: tfs.append( ZeroMeanUnitVarianceTransform_Standalone( per_channel=self.Config.NORMALIZE_PER_CHANNEL)) tfs.append(NumpyToTensor(keys=["data", "seg"], cast_to="float")) batch_gen = SingleThreadedAugmenter(batch_generator, Compose(tfs)) return batch_gen
def _augment_data(self, batch_generator, type=None): if self.Config.DATA_AUGMENTATION: num_processes = 15 # 15 is a bit faster than 8 on cluster # num_processes = multiprocessing.cpu_count() # on cluster: gives all cores, not only assigned cores else: num_processes = 6 tfs = [] if self.Config.NORMALIZE_DATA: # todo: Use original transform as soon as bug fixed in batchgenerators # tfs.append(ZeroMeanUnitVarianceTransform(per_channel=self.Config.NORMALIZE_PER_CHANNEL)) tfs.append( ZeroMeanUnitVarianceTransform_Standalone( per_channel=self.Config.NORMALIZE_PER_CHANNEL)) if self.Config.SPATIAL_TRANSFORM == "SpatialTransformPeaks": SpatialTransformUsed = SpatialTransformPeaks elif self.Config.SPATIAL_TRANSFORM == "SpatialTransformCustom": SpatialTransformUsed = SpatialTransformCustom else: SpatialTransformUsed = SpatialTransform if self.Config.DATA_AUGMENTATION: if type == "train": # patch_center_dist_from_border: # if 144/2=72 -> always exactly centered; otherwise a bit off center # (brain can get off image and will be cut then) if self.Config.DAUG_SCALE: if self.Config.INPUT_RESCALING: source_mm = 2 # for bb target_mm = float(self.Config.RESOLUTION[:-2]) scale_factor = target_mm / source_mm scale = (scale_factor, scale_factor) else: scale = (0.9, 1.5) if self.Config.PAD_TO_SQUARE: patch_size = self.Config.INPUT_DIM else: patch_size = None # keeps dimensions of the data # spatial transform automatically crops/pads to correct size center_dist_from_border = int( self.Config.INPUT_DIM[0] / 2.) - 10 # (144,144) -> 62 tfs.append( SpatialTransformUsed( patch_size, patch_center_dist_from_border= center_dist_from_border, do_elastic_deform=self.Config.DAUG_ELASTIC_DEFORM, alpha=self.Config.DAUG_ALPHA, sigma=self.Config.DAUG_SIGMA, do_rotation=self.Config.DAUG_ROTATE, angle_x=self.Config.DAUG_ROTATE_ANGLE, angle_y=self.Config.DAUG_ROTATE_ANGLE, angle_z=self.Config.DAUG_ROTATE_ANGLE, do_scale=True, scale=scale, border_mode_data='constant', border_cval_data=0, order_data=3, border_mode_seg='constant', border_cval_seg=0, order_seg=0, random_crop=True, p_el_per_sample=self.Config.P_SAMP, p_rot_per_sample=self.Config.P_SAMP, p_scale_per_sample=self.Config.P_SAMP)) if self.Config.DAUG_RESAMPLE: tfs.append( SimulateLowResolutionTransform(zoom_range=(0.5, 1), p_per_sample=0.2, per_channel=False)) if self.Config.DAUG_RESAMPLE_LEGACY: tfs.append(ResampleTransformLegacy(zoom_range=(0.5, 1))) if self.Config.DAUG_GAUSSIAN_BLUR: tfs.append( GaussianBlurTransform( blur_sigma=self.Config.DAUG_BLUR_SIGMA, different_sigma_per_channel=False, p_per_sample=self.Config.P_SAMP)) if self.Config.DAUG_NOISE: tfs.append( GaussianNoiseTransform( noise_variance=self.Config.DAUG_NOISE_VARIANCE, p_per_sample=self.Config.P_SAMP)) if self.Config.DAUG_MIRROR: tfs.append(MirrorTransform()) if self.Config.DAUG_FLIP_PEAKS: tfs.append(FlipVectorAxisTransform()) tfs.append(NumpyToTensor(keys=["data", "seg"], cast_to="float")) #num_cached_per_queue 1 or 2 does not really make a difference batch_gen = MultiThreadedAugmenter(batch_generator, Compose(tfs), num_processes=num_processes, num_cached_per_queue=1, seeds=None, pin_memory=True) return batch_gen # data: (batch_size, channels, x, y), seg: (batch_size, channels, x, y)