コード例 #1
0
    def reset(self):
        # Reset the state of the environment to an initial state
        self.cash_balance = self.opening_account_balance
        self.account_value = self.opening_account_balance
        self.num_shares_held = 0
        self.cost_basis = 0
        self.current_step = 0
        self.trades = []
        if self.viz is None:
            self.viz = TradeVisualizer(
                self.ticker,
                self.ticker_file_stream,
                "TFRL-Cookbook Ch4-StockTradingEnv",
            )

        return self.get_observation()
コード例 #2
0
    def reset(self):
        # Reset the state of the environment to an initial state
        self.cash_balance = self.opening_account_balance
        self.account_value = self.opening_account_balance
        self.num_coins_held = 0
        self.cost_basis = 0
        self.current_step = 0
        self.trades = []
        if self.viz is None:
            self.viz = TradeVisualizer(
                self.ticker,
                self.ticker_file_stream,
                "TFRL-Cookbook Ch4-CryptoTradingEnv",
                skiprows=
                1,  # Skip the first line with the data download source URL
            )

        return self.get_observation()
コード例 #3
0
class CryptoTradingVisualContinuousEnv(gym.Env):
    def __init__(self, env_config: Dict = env_config):
        """Crypto trading environment for RL agents with continuous action space

        Args:
            ticker (str, optional): Ticker symbol for the crypto-fiat currency pair.
            Defaults to "BTCUSD".
            env_config (Dict): Env configuration values
        """
        super(CryptoTradingVisualContinuousEnv, self).__init__()
        self.ticker = env_config.get("ticker", "BTCUSD")
        data_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)),
                                "data")
        self.exchange = env_config["exchange"]
        freq = env_config["frequency"]
        if freq == "daily":
            self.freq_suffix = "d"
        elif freq == "hourly":
            self.freq_suffix = "1hr"
        elif freq == "minutes":
            self.freq_suffix = "1min"

        self.ticker_file_stream = os.path.join(
            f"{data_dir}",
            f"{'_'.join([self.exchange, self.ticker, self.freq_suffix])}.csv",
        )
        assert os.path.isfile(
            self.ticker_file_stream
        ), f"Crypto data file stream not found at: data/{self.ticker_file_stream}.csv"
        # Crypto exchange data stream. An offline file stream is used. Alternatively, a web
        # API can be used to pull live data.
        self.ohlcv_df = (pd.read_csv(
            self.ticker_file_stream,
            skiprows=1).sort_values(by="Date").reset_index(drop=True))

        self.opening_account_balance = env_config["opening_account_balance"]
        # Action: 1-dim value indicating a fraction amount of coins to Buy (0 to 1) or
        # sell (-1 to 0). The fraction is taken on the allowable number of
        # coins that can be bought or sold based on the account balance (no margin).
        self.action_space = spaces.Box(low=np.array([-1]),
                                       high=np.array([1]),
                                       dtype=np.float)

        self.observation_features = [
            "Open",
            "High",
            "Low",
            "Close",
            "Volume BTC",
            "Volume USD",
        ]
        self.obs_width, self.obs_height = 128, 128
        self.horizon = env_config.get("observation_horizon_sequence_length")
        self.observation_space = spaces.Box(
            low=0,
            high=255,
            shape=(128, 128, 3),
            dtype=np.uint8,
        )
        self.viz = None  # Visualizer

    def step(self, action):
        # Execute one step within the environment
        self.execute_trade_action(action)

        self.current_step += 1

        reward = self.account_value - self.opening_account_balance  # Profit (loss)
        done = self.account_value <= 0 or self.current_step >= len(
            self.ohlcv_df.loc[:, "Open"].values)

        obs = self.get_observation()

        return obs, reward, done, {}

    def reset(self):
        # Reset the state of the environment to an initial state
        self.cash_balance = self.opening_account_balance
        self.account_value = self.opening_account_balance
        self.num_coins_held = 0
        self.cost_basis = 0
        self.current_step = 0
        self.trades = []
        if self.viz is None:
            self.viz = TradeVisualizer(
                self.ticker,
                self.ticker_file_stream,
                "TFRL-Cookbook Ch4-CryptoTradingVisualContinuousEnv",
                skiprows=1,
            )

        return self.get_observation()

    def render(self, **kwargs):
        # Render the environment to the screen

        if self.current_step > self.horizon:
            self.viz.render(
                self.current_step,
                self.account_value,
                self.trades,
                window_size=self.horizon,
            )

    def close(self):
        if self.viz is not None:
            self.viz.close()
            self.viz = None

    def get_observation(self):
        """Return a view of the Ticker price chart as image observation

        Returns:
            img_observation (np.ndarray): Image of ticker candle stick plot
            with volume bars as observation
        """
        img_observation = self.viz.render_image_observation(
            self.current_step, self.horizon)
        img_observation = cv2.resize(img_observation,
                                     dsize=(128, 128),
                                     interpolation=cv2.INTER_CUBIC)

        return img_observation

    def execute_trade_action(self, action):

        if action == 0:  # Indicates "HODL" action
            # HODL position; No trade to be executed
            return
        order_type = "buy" if action > 0 else "sell"

        order_fraction_of_allowable_coins = abs(action)
        # Stochastically determine the current stock price based on Market Open & Close
        current_price = random.uniform(
            self.ohlcv_df.loc[self.current_step, "Open"],
            self.ohlcv_df.loc[self.current_step, "Close"],
        )
        if order_type == "buy":
            allowable_coins = int(self.cash_balance / current_price)
            # Simulate a BUY order and execute it at current_price
            num_coins_bought = int(allowable_coins *
                                   order_fraction_of_allowable_coins)
            current_cost = self.cost_basis * self.num_coins_held
            additional_cost = num_coins_bought * current_price

            self.cash_balance -= additional_cost
            self.cost_basis = (current_cost + additional_cost) / (
                self.num_coins_held + num_coins_bought)
            self.num_coins_held += num_coins_bought

            if num_coins_bought > 0:
                self.trades.append({
                    "type": "buy",
                    "step": self.current_step,
                    "shares": num_coins_bought,
                    "proceeds": additional_cost,
                })

        elif order_type == "sell":
            # Simulate a SELL order and execute it at current_price
            num_coins_sold = int(self.num_coins_held *
                                 order_fraction_of_allowable_coins)
            self.cash_balance += num_coins_sold * current_price
            self.num_coins_held -= num_coins_sold
            sale_proceeds = num_coins_sold * current_price

            if num_coins_sold > 0:
                self.trades.append({
                    "type": "sell",
                    "step": self.current_step,
                    "shares": num_coins_sold,
                    "proceeds": sale_proceeds,
                })
        if self.num_coins_held == 0:
            self.cost_basis = 0
        # Update account value
        self.account_value = self.cash_balance + self.num_coins_held * current_price
コード例 #4
0
class StockTradingContinuousEnv(gym.Env):
    def __init__(self, env_config: Dict = env_config):
        """Stock trading environment for RL agents
        The observations are stock price info (OHLCV) over a horizon as specified
        in env_config. Action space is discrete to perform buy/sell/hold trades.
        Args:
            ticker (str, optional): Ticker symbol for the stock. Defaults to "MSFT".
            env_config (Dict): Env configuration values
        """
        super(StockTradingContinuousEnv, self).__init__()
        self.ticker = env_config.get("ticker", "MSFT")
        data_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)),
                                "data")
        self.ticker_file_stream = os.path.join(f"{data_dir}",
                                               f"{self.ticker}.csv")
        assert os.path.isfile(
            self.ticker_file_stream
        ), f"Historical stock data file stream not found at: data/{self.ticker}.csv"
        # Stock market data stream. An offline file stream is used. Alternatively, a web
        # API can be used to pull live data.
        # Data-Frame: Date Open High Low Close Adj-Close Volume
        self.ohlcv_df = pd.read_csv(self.ticker_file_stream)

        self.opening_account_balance = env_config["opening_account_balance"]
        # Action: 1-dim value indicating a fraction amount of shares to Buy (0 to 1) or
        # sell (-1 to 0). The fraction is taken on the allowable number of
        # shares that can be bought or sold based on the account balance (no margin).
        self.action_space = spaces.Box(low=np.array([-1]),
                                       high=np.array([1]),
                                       dtype=np.float)

        self.observation_features = [
            "Open",
            "High",
            "Low",
            "Close",
            "Adj Close",
            "Volume",
        ]
        self.horizon = env_config.get("observation_horizon_sequence_length")
        self.observation_space = spaces.Box(
            low=0,
            high=1,
            shape=(len(self.observation_features), self.horizon + 1),
            dtype=np.float,
        )
        self.order_size = env_config.get("order_size")
        self.viz = None  # Visualizer

    def step(self, action):
        # Execute one step within the trading environment
        self.execute_trade_action(action)

        self.current_step += 1

        reward = self.account_value - self.opening_account_balance  # Profit (loss)
        done = self.account_value <= 0 or self.current_step * self.horizon >= len(
            self.ohlcv_df.loc[:, "Open"].values)

        obs = self.get_observation()

        return obs, reward, done, {}

    def reset(self):
        # Reset the state of the environment to an initial state
        self.cash_balance = self.opening_account_balance
        self.account_value = self.opening_account_balance
        self.num_shares_held = 0
        self.cost_basis = 0
        self.current_step = 0
        self.trades = []
        if self.viz is None:
            self.viz = TradeVisualizer(
                self.ticker,
                self.ticker_file_stream,
                "TFRL-Cookbook Ch4-StockTradingEnv",
            )

        return self.get_observation()

    def render(self, **kwargs):
        # Render the environment to the screen

        if self.current_step > self.horizon:
            self.viz.render(
                self.current_step,
                self.account_value,
                self.trades,
                window_size=self.horizon,
            )

    def close(self):
        if self.viz is not None:
            self.viz.close()
            self.viz = None

    def get_observation(self):
        # Get stock price info data table from input (file/live) stream
        observation = (
            self.ohlcv_df.loc[self.current_step:self.current_step +
                              self.horizon,
                              self.observation_features, ].to_numpy().T)
        return observation

    def execute_trade_action(self, action):

        if action == 0:  # Indicates "Hold" action
            # Hold position; No trade to be executed
            return

        order_type = "buy" if action > 0 else "sell"

        order_fraction_of_allowable_shares = abs(action)
        # Stochastically determine the current stock price based on Market Open & Close
        current_price = random.uniform(
            self.ohlcv_df.loc[self.current_step, "Open"],
            self.ohlcv_df.loc[self.current_step, "Close"],
        )
        if order_type == "buy":
            allowable_shares = int(self.cash_balance / current_price)
            # Simulate a BUY order and execute it at current_price
            num_shares_bought = int(allowable_shares *
                                    order_fraction_of_allowable_shares)
            current_cost = self.cost_basis * self.num_shares_held
            additional_cost = num_shares_bought * current_price

            self.cash_balance -= additional_cost
            self.cost_basis = (current_cost + additional_cost) / (
                self.num_shares_held + num_shares_bought)
            self.num_shares_held += num_shares_bought

            if num_shares_bought > 0:
                self.trades.append({
                    "type": "buy",
                    "step": self.current_step,
                    "shares": num_shares_bought,
                    "proceeds": additional_cost,
                })

        elif order_type == "sell":
            # Simulate a SELL order and execute it at current_price
            num_shares_sold = int(self.num_shares_held *
                                  order_fraction_of_allowable_shares)
            self.cash_balance += num_shares_sold * current_price
            self.num_shares_held -= num_shares_sold
            sale_proceeds = num_shares_sold * current_price

            if num_shares_sold > 0:
                self.trades.append({
                    "type": "sell",
                    "step": self.current_step,
                    "shares": num_shares_sold,
                    "proceeds": sale_proceeds,
                })
        if self.num_shares_held == 0:
            self.cost_basis = 0
        # Update account value
        self.account_value = self.cash_balance + self.num_shares_held * current_price
コード例 #5
0
class CryptoTradingVisualEnv(gym.Env):
    def __init__(self, env_config: Dict = env_config):
        """Crypto trading environment for RL agents
        The observations are crypto price info (OHLCV) over a horizon as specified
        in env_config. Action space is discrete to perform buy/sell/hold trades.
        Args:
            ticker (str, optional): Ticker symbol for the crypto-fiat currentcy pair.
            Defaults to "ETHUSD".
            env_config (Dict): Env configuration values
        """
        super(CryptoTradingVisualEnv, self).__init__()
        self.ticker = env_config.get("ticker", "ETHUSD")
        data_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "data")
        self.exchange = env_config["exchange"]
        freq = env_config["frequency"]
        if freq == "daily":
            self.freq_suffix = "d"
        elif freq == "hourly":
            self.freq_suffix = "1hr"
        elif freq == "minutes":
            self.freq_suffix = "1min"

        self.ticker_file_stream = os.path.join(
            f"{data_dir}",
            f"{'_'.join([self.exchange, self.ticker, self.freq_suffix])}.csv",
        )
        assert os.path.isfile(
            self.ticker_file_stream
        ), f"Crypto data file stream not found at: data/{self.ticker_file_stream}.csv"
        # Crypto exchange data stream. An offline file stream is used. Alternatively, a web
        # API can be used to pull live data.
        self.ohlcv_df = pd.read_csv(self.ticker_file_stream, skiprows=1).sort_values(
            by="Date"
        )

        self.opening_account_balance = env_config["opening_account_balance"]
        # Action: 0-> Hold; 1-> Buy; 2 ->Sell;
        self.action_space = spaces.Discrete(3)

        self.observation_features = [
            "Open",
            "High",
            "Low",
            "Close",
            "Volume ETH",
            "Volume USD",
        ]
        self.obs_width, self.obs_height = 128, 128
        self.horizon = env_config.get("observation_horizon_sequence_length")
        self.observation_space = spaces.Box(
            low=0,
            high=255,
            shape=(128, 128, 3),
            dtype=np.uint8,
        )
        self.order_size = env_config.get("order_size")
        self.viz = None  # Visualizer

    def step(self, action):
        # Execute one step within the trading environment
        self.execute_trade_action(action)

        self.current_step += 1

        reward = self.account_value - self.opening_account_balance  # Profit (loss)
        done = self.account_value <= 0 or self.current_step >= len(
            self.ohlcv_df.loc[:, "Open"].values
        )

        obs = self.get_observation()

        return obs, reward, done, {}

    def reset(self):
        # Reset the state of the environment to an initial state
        self.cash_balance = self.opening_account_balance
        self.account_value = self.opening_account_balance
        self.num_coins_held = 0
        self.cost_basis = 0
        self.current_step = 0
        self.trades = []
        if self.viz is None:
            self.viz = TradeVisualizer(
                self.ticker,
                self.ticker_file_stream,
                "TFRL-Cookbook Ch4-CryptoTradingVisualEnv",
                skiprows=1,
            )

        return self.get_observation()

    def render(self, **kwargs):
        # Render the environment to the screen

        if self.current_step > self.horizon:
            self.viz.render(
                self.current_step,
                self.account_value,
                self.trades,
                window_size=self.horizon,
            )

    def close(self):
        if self.viz is not None:
            self.viz.close()
            self.viz = None

    def get_observation(self):
        """Return a view of the Ticker price chart as image observation

        Returns:
            img_observation (np.ndarray): Image of ticker candle stick plot
            with volume bars as observation
        """
        img_observation = self.viz.render_image_observation(
            self.current_step, self.horizon
        )
        img_observation = cv2.resize(
            img_observation, dsize=(128, 128), interpolation=cv2.INTER_CUBIC
        )

        return img_observation

    def execute_trade_action(self, action):
        if action == 0:  # Hold position
            return
        order_type = "buy" if action == 1 else "sell"

        # Stochastically determine the current stock price based on Market Open & Close
        current_price = random.uniform(
            self.ohlcv_df.loc[self.current_step, "Open"],
            self.ohlcv_df.loc[self.current_step, "Close"],
        )
        if order_type == "buy":
            allowable_coins = int(self.cash_balance / current_price)
            if allowable_coins < self.order_size:
                # Not enough cash to execute a buy order
                return
            # Simulate a BUY order and execute it at current_price
            num_coins_bought = self.order_size
            current_cost = self.cost_basis * self.num_coins_held
            additional_cost = num_coins_bought * current_price

            self.cash_balance -= additional_cost
            self.cost_basis = (current_cost + additional_cost) / (
                self.num_coins_held + num_coins_bought
            )
            self.num_coins_held += num_coins_bought

            self.trades.append(
                {
                    "type": "buy",
                    "step": self.current_step,
                    "shares": num_coins_bought,
                    "proceeds": additional_cost,
                }
            )

        elif order_type == "sell":
            # Simulate a SELL order and execute it at current_price
            if self.num_coins_held < self.order_size:
                # Not enough coins to execute a sell order
                return
            num_coins_sold = self.order_size
            self.cash_balance += num_coins_sold * current_price
            self.num_coins_held -= num_coins_sold
            sale_proceeds = num_coins_sold * current_price

            self.trades.append(
                {
                    "type": "sell",
                    "step": self.current_step,
                    "shares": num_coins_sold,
                    "proceeds": sale_proceeds,
                }
            )
        if self.num_coins_held == 0:
            self.cost_basis = 0
        # Update account value
        self.account_value = self.cash_balance + self.num_coins_held * current_price