def test_merge(): symToTa = start.get_all_from( os.path.join(local_path, 'start_test.dir', 'ta')) df = start.merge(symToTa, '2016-05-02', '2016-05-28') assert (40, 82) == df.shape df = start.merge(symToTa, '2016-05-03', '2016-05-28') assert (38, 82) == df.shape df = start.merge(symToTa, '2016-05-02', '2016-05-27') assert (40, 82) == df.shape df = start.merge(symToTa, '2016-05-02', '2016-05-26') assert (38, 82) == df.shape
def test_pred(): symToTa = start.get_all_from( os.path.join(local_path, 'start_test.dir', 'ta')) df = start.merge(symToTa, '2016-05-02', '2016-05-28') lLabel = [x for x in df.columns if x.startswith('label')] for sym in symToTa: for each in lLabel[4:]: del symToTa[sym][each] df = start.pred(symToTa, 3, {}, '2016-01-01', '2016-12-31', '2016-05-27') assert (2, 77) == df.shape
def test_build_trains2(): symToTa = start.get_all_from( os.path.join(local_path, 'start_test.dir', 'ta')) df = start.merge(symToTa, '2016-05-02', '2016-05-28') lLabel = [x for x in df.columns if x.startswith('label')] for sym in symToTa: for each in lLabel[4:]: del symToTa[sym][each] df = start.build_trains(symToTa, '2016-05-02', '2016-05-27') assert (32, 80) == df.shape
def test_train(): symToTa = start.get_all_from( os.path.join(local_path, 'start_test.dir', 'ta')) df = start.merge(symToTa, '2016-05-02', '2016-05-28') lLabel = [x for x in df.columns if x.startswith('label')] for sym in symToTa: for each in lLabel[4:]: del symToTa[sym][each] #npLabel = df.loc[:,start.get_label_name(df,3)].values.copy() #npLabel[npLabel != 1.0] #npLabel[npLabel > 1.0] = 1 #npLabel[npLabel < 1.0] = 0 #print npLabel #assert False df = start.train2(symToTa, 3, {}, '2016-01-01', '2016-12-31', '2016-01-01', '2016-12-31') assert (32, 81) == df.shape
def test_get_feat_names(): symToTa = start.get_all_from( os.path.join(local_path, 'start_test.dir', 'ta')) df = start.merge(symToTa, '2016-05-02', '2016-05-28') assert 70 == len(start.get_feat_names(df))