def adv_train_process(self,delay=0.5):
        "Adversarial training, returns pertubed mini batch"
        "delay: parameter to decide how many epochs should be used as adv training"

        if self.opts['Adversary'] == 'WT':
            adv_train_data_path = '../data/WalkieTalkie/defended_csv/adv_train_WT.csv'
        else:
            adv_train_data_path = self.data_path + self.classifier_type + '/' + self.opts['adv_train_data_path']
        print('adv train data path: ',adv_train_data_path)

        if self.mode in ['wf','wf_ow','wf_kf']:
            "load data"
            if self.mode != 'wf_kf':
                train_path = self.data_path + self.opts['train_data_path']
                train_data = utils_wf.load_data_main(train_path,self.opts['batch_size'],shuffle=True)
                # test_data = utils_wf.load_data_main(self.data_path + self.opts['test_data_path'],self.opts['batch_size'])
            else:
                # benign_path = '../data/wf/cross_val/'
                # train_path =  benign_path + self.opts['train_data_path']
                train_path = '../data/wf/train_NoDef_burst.csv'
                train_data = utils_wf.load_data_main(train_path,self.opts['batch_size'], shuffle=True)
                # test_data = utils_wf.load_data_main(benign_path + self.opts['test_data_path'],self.opts['batch_size'])
            print('train data path: ',train_path)

            adv_train_data = utils_wf.load_data_main(adv_train_data_path,self.opts['batch_size'],shuffle=True)

            "load target model structure"
            if self.classifier_type == 'cnn':
                params = utils_wf.params_cnn(self.opts['num_class'], self.opts['input_size'])
                target_model = models.cnn_norm(params).to(self.device)
                target_model.train()

            elif self.classifier_type == 'lstm':
                if self.mode == 'wf_ow':
                    params = utils_wf.params_lstm_ow(self.opts['num_class'], self.opts['input_size'],self.opts['batch_size'])
                else:
                    params = utils_wf.params_lstm(self.opts['num_class'], self.opts['input_size'],self.opts['batch_size'])
                target_model = models.lstm(params).to(self.device)
                target_model.train()


        elif self.mode == 'shs':
            "load data"
            train_data = utils_shs.load_data_main(self.data_path + self.opts['train_data_path'],self.opts['batch_size'])
            test_data = utils_shs.load_data_main(self.data_path + self.opts['test_data_path'],self.opts['batch_size'])
            adv_train_data = utils_shs.load_data_main(adv_train_data_path, self.opts['batch_size'])

            "load target model structure"
            if self.classifier_type == 'cnn':
                params = utils_shs.params_cnn(self.opts['num_class'], self.opts['input_size'])
                target_model = models.cnn_noNorm(params).to(self.device)
                target_model.train()

            elif self.classifier_type == 'lstm':
                params = utils_shs.params_lstm(self.opts['num_class'], self.opts['input_size'], self.opts['batch_size'])
                target_model = models.lstm(params).to(self.device)
                target_model.train()

        else:
            print('mode not in ["wf","shs"], system will exit.')
            sys.exit()

        loss_criterion = nn.CrossEntropyLoss()
        optimizer = optim.Adam(target_model.parameters(), lr=1e-3)


        "start training"
        steps = 0
        flag = False
        start_time = datetime.now()
        # print('adversary working dir {}'.format(adv_train_data_path))
        for epoch in range(self.opts['epochs']):
            print('Starting epoch %d / %d' % (epoch + 1, self.opts['epochs']))

            if flag:
                print('{} based adversarial training...'.format(self.opts['Adversary']))

            for (x,y),(x_adv,y_adv) in zip(train_data,adv_train_data):
                steps += 1
                optimizer.zero_grad()

                x,y = x.to(self.device), y.to(self.device)
                outputs = target_model(x)
                loss = loss_criterion(outputs,y)

                "adversarial training"
                if epoch + 1 >= int((1-delay)*self.opts['epochs']):
                    x_adv, y_adv = x_adv.to(self.device), y_adv.to(self.device)
                    flag = True
                    loss_adv = loss_criterion(target_model(x_adv),y_adv)
                    loss = (loss + loss_adv) / 2

                "print results every 100 steps"
                if steps % 100 == 0:

                    end_time = datetime.now()
                    time_diff = (end_time - start_time).seconds
                    time_usage = '{:3}m{:3}s'.format(int(time_diff / 60), time_diff % 60)
                    msg = "Step {:5}, Loss:{:6.2f}, Time usage:{:9}."
                    print(msg.format(steps, loss, time_usage))

                loss.backward()
                optimizer.step()

            if epoch!=0 and epoch % 10 == 0 or epoch == self.opts['epochs']:
                if self.mode != 'wf_kf':
                    output_name = '/adv_target_model_%s.pth' % self.opts['Adversary']
                else:
                    output_name = '/adv_target_model_%s_%d.pth' % (self.opts['Adversary'], self.opts['id'])
                output_path = self.model_path + output_name
                torch.save(target_model.state_dict(), output_path)


        "test trianed model"
コード例 #2
0
        'train_data_path': '../data/shs/traffic_train.csv',
        'test_data_path': '../data/shs/traffic_test.csv',
    }


if __name__ == '__main__':

    mode = 'wf'

    if mode == 'wf':
        opts = get_opts_wf(mode)
        params = utils_wf.params_lstm(opts['num_class'], opts['input_size'],
                                      opts['batch_size'])
    elif mode == 'shs':
        opts = get_opts_shs(mode)
        params = utils_shs.params_lstm(opts['num_class'], opts['input_size'],
                                       opts['batch_size'])

    try:
        "get param from tuner"
        RECEIVED_PARAMS = nni.get_next_parameter()
        LOG.debug(RECEIVED_PARAMS)
        PARAMS = params
        PARAMS.update(RECEIVED_PARAMS)
        LOG.debug(PARAMS)
        model = train_lstm.train_lstm(opts, PARAMS)
        model.train_model()
    except Exception as exception:
        LOG.exception(exception)
        raise
コード例 #3
0
    def test_model(self):

        "load data and target model"
        if self.mode == 'wf' or 'detect':
            "load data"
            if mode == 'wf':
                # train_data = utils_wf.load_data_main(self.opts['train_data_path'], self.opts['batch_size'])
                test_data = utils_wf.load_data_main(
                    self.opts['test_data_path'], self.opts['batch_size'])
            elif mode == 'detect':
                # train_data = utils_wf.load_NormData_main(self.opts['train_data_path'], self.opts['batch_size'])
                test_data = utils_wf.load_NormData_main(
                    self.opts['test_data_path'], self.opts['batch_size'])

            "load target model structure"
            if self.opts['classifier'] == 'lstm':
                params = utils_wf.params_lstm_detect(self.opts['num_class'],
                                                     self.opts['input_size'],
                                                     self.opts['batch_size'])
                target_model = models.lstm(params).to(self.device)
            elif self.opts['classifier'] == 'rnn':
                params = utils_wf.params_rnn(self.opts['num_class'],
                                             self.opts['input_size'],
                                             self.opts['batch_size'])
                target_model = models.rnn(params).to(self.device)
            elif self.opts['classifier'] == 'cnn':
                params = utils_wf.params_cnn(self.opts['num_class'],
                                             self.opts['input_size'])
                target_model = models.cnn(params).to(self.device)
            elif self.opts['classifier'] == 'fcnn':
                params = utils_wf.params_fcnn(self.opts['num_class'],
                                              self.opts['input_size'])
                target_model = models.fcnn(params).to(self.device)
            target_model.eval()

        elif self.mode == 'shs':
            "load data"
            # train_data = utils_shs.load_data_main(self.opts['train_data_path'], self.opts['batch_size'])
            test_data = utils_shs.load_data_main(self.opts['test_data_path'],
                                                 self.opts['batch_size'])

            "load target model structure"
            params = utils_shs.params_lstm(self.opts['num_class'],
                                           self.opts['input_size'],
                                           self.opts['batch_size'])
            target_model = models.lstm(params).to(self.device)
            target_model.train()

        else:
            print('mode not in ["wf","shs"], system will exit.')
            sys.exit()

        model_name = self.model_path + '/target_model.pth'

        model_weights = torch.load(model_name, map_location=self.device)
        for k in model_weights:
            print(k)
        # for k in model_weights['shared_layers']: print("Shared layer", k)

        target_model.load_state_dict(
            torch.load(model_name, map_location=self.device))
        target_model.eval()

        num_correct = 0
        total_instances = 0
        y_test = []
        y_pred = []
        for i, data in enumerate(test_data, 0):
            test_x, test_y = data
            test_x, test_y = test_x.to(self.device), test_y.to(self.device)
            pred_lab = torch.argmax(target_model(test_x), 1)
            num_correct += torch.sum(pred_lab == test_y, 0)
            total_instances += len(test_y)

            "save result"
            y_test += (test_y.cpu().numpy().tolist())
            y_pred += (pred_lab.cpu().numpy().tolist())

        print('{} with {}'.format(self.opts['mode'], self.opts['classifier']))

        print(classification_report(y_test, y_pred))
        print('confusion matrix is {}'.format(confusion_matrix(y_test,
                                                               y_pred)))
        print('accuracy of target model against test dataset: %f\n' %
              (num_correct.item() / total_instances))
        print('accuracy is {}'.format(metrics.accuracy_score(y_test, y_pred)))

        # plot confusion matrix
        cm = confusion_matrix(y_test, y_pred)
        heat_map(cm, self.opts['classifier'], namorlize=True)
コード例 #4
0
    def train_model(self):

        if self.mode == 'wf' or 'detect':
            "load data"
            if mode == 'wf':
                train_data = utils_wf.load_data_main(
                    self.opts['train_data_path'], self.opts['batch_size'])
                # test_data = utils_wf.load_data_main(self.opts['test_data_path'],self.opts['batch_size'])
            elif mode == 'detect':
                train_data = utils_wf.load_NormData_main(
                    self.opts['train_data_path'], self.opts['batch_size'])
                # test_data = utils_wf.load_NormData_main(self.opts['test_data_path'], self.opts['batch_size'])

            "load target model structure"
            if self.opts['classifier'] == 'lstm':
                params = utils_wf.params_lstm_detect(self.opts['num_class'],
                                                     self.opts['input_size'],
                                                     self.opts['batch_size'])
                target_model = models.lstm(params).to(self.device)
            elif self.opts['classifier'] == 'rnn':
                params = utils_wf.params_rnn(self.opts['num_class'],
                                             self.opts['input_size'],
                                             self.opts['batch_size'])
                target_model = models.rnn(params).to(self.device)
            elif self.opts['classifier'] == 'cnn':
                params = utils_wf.params_cnn_detect(self.opts['num_class'],
                                                    self.opts['input_size'])
                target_model = models.cnn(params).to(self.device)
            elif self.opts['classifier'] == 'fcnn':
                params = utils_wf.params_fcnn(self.opts['num_class'],
                                              self.opts['input_size'])
                target_model = models.fcnn(params).to(self.device)
            target_model.train()

        elif self.mode == 'shs':
            "load data"
            train_data = utils_shs.load_data_main(self.opts['train_data_path'],
                                                  self.opts['batch_size'])
            test_data = utils_shs.load_data_main(self.opts['test_data_path'],
                                                 self.opts['batch_size'])

            "load target model structure"
            params = utils_shs.params_lstm(self.opts['num_class'],
                                           self.opts['input_size'],
                                           self.opts['batch_size'])
            target_model = models.lstm(params).to(self.device)
            target_model.train()

        else:
            print('mode not in ["wf","shs"], system will exit.')
            sys.exit()

        "train process"
        optimizer = torch.optim.Adam(target_model.parameters(),
                                     lr=self.opts['lr'])

        for epoch in range(self.opts['epochs']):
            loss_epoch = 0
            for i, data in enumerate(train_data, 0):
                train_x, train_y = data
                train_x, train_y = train_x.to(self.device), train_y.to(
                    self.device)

                "batch_first = False"
                if not self.opts['batch_size']:
                    train_x = train_x.transpose(0, 1)

                optimizer.zero_grad()
                logits_model = target_model(train_x)
                loss_model = F.cross_entropy(logits_model, train_y)
                loss_epoch += loss_model

                loss_model.backward(retain_graph=True)
                optimizer.step()

                if i % 100 == 0:
                    _, predicted = torch.max(logits_model, 1)
                    correct = int(sum(predicted == train_y))
                    accuracy = correct / len(train_y)
                    msg = 'Epoch {:5}, Step {:5}, Loss: {:6.2f}, Accuracy:{:8.2%}.'
                    print(msg.format(epoch, i, loss_model, accuracy))

                "empty cache"
                del train_x, train_y
                torch.cuda.empty_cache()

            "save model every 10 epochs"
            if epoch % 10 == 0:
                targeted_model_path = self.model_path + '/target_model.pth'
                torch.save(target_model.state_dict(), targeted_model_path)

        "test target model"
コード例 #5
0
    def train_model(self):

        if self.mode in ['wf','wf_ow','detect','wf_kf']:
            "load data"
            train_data = utils_wf.load_data_main(self.opts['train_data_path'],self.opts['batch_size'],shuffle=True)
            test_data = utils_wf.load_data_main(self.opts['test_data_path'],self.opts['batch_size'],shuffle=True)

            "load target model structure"
            if self.mode == 'wf_ow':
                params = utils_wf.params_lstm_ow(self.opts['num_class'],self.opts['input_size'],self.opts['batch_size'])
            elif self.mode == 'wf_kf':
                params = utils_wf.params_lstm(self.opts['num_class'], self.opts['input_size'],self.opts['batch_size'])
            else:
                params = utils_wf.params_lstm(self.opts['num_class'],self.opts['input_size'],self.opts['batch_size'])
            target_model = models.lstm(params).to(self.device)
            target_model.train()

        elif self.mode == 'shs':
            "load data"
            train_data = utils_shs.load_data_main(self.opts['train_data_path'],self.opts['batch_size'])
            test_data = utils_shs.load_data_main(self.opts['test_data_path'],self.opts['batch_size'])

            "load target model structure"
            params = utils_shs.params_lstm(self.opts['num_class'],self.opts['input_size'],self.opts['batch_size'])
            target_model = models.lstm(params).to(self.device)
            target_model.train()

        else:
            print('mode not in ["wf","shs"], system will exit.')
            sys.exit()

        print(f"training data: {self.opts['train_data_path']}")
        print(f"testing data: {self.opts['test_data_path']}")

        "train process"
        optimizer = torch.optim.Adam(target_model.parameters(),lr=self.opts['lr'])

        for epoch in range(self.opts['epochs']):
            loss_epoch = 0
            for i, data in enumerate(train_data, 0):
                train_x, train_y = data
                train_x, train_y = train_x.to(self.device), train_y.to(self.device)

                "batch_first = False"
                if not self.opts['batch_size']:
                    train_x = train_x.transpose(0,1)

                optimizer.zero_grad()
                logits_model = target_model(train_x)
                loss_model = F.cross_entropy(logits_model, train_y)
                loss_epoch += loss_model

                loss_model.backward(retain_graph=True)
                optimizer.step()

                if i % 100 == 0:
                    _, predicted = torch.max(logits_model, 1)
                    correct = int(sum(predicted == train_y))
                    accuracy = correct / len(train_y)
                    msg = 'Epoch {:5}, Step {:5}, Loss: {:6.2f}, Accuracy:{:8.2%}.'
                    print(msg.format(epoch, i, loss_model, accuracy))


            "save model every 10 epochs"
            if self.mode == 'wf_kf':
                model_name = '/target_model_%d.pth' % self.opts['id']
            else:
                model_name = '/target_model.pth'

            if epoch != 0 and epoch % 10 == 0:
                targeted_model_path = self.model_path + model_name
                torch.save(target_model.state_dict(), targeted_model_path)


        "test target model"
        target_model.eval()

        num_correct = 0
        total_instances = 0
        for i, data in enumerate(test_data, 0):
            test_x, test_y = data
            test_x, test_y = test_x.to(self.device), test_y.to(self.device)
            pred_lab = torch.argmax(target_model(test_x), 1)
            num_correct += torch.sum(pred_lab == test_y, 0)
            total_instances += len(test_y)

        print('accuracy of target model against test dataset: %f\n' % (num_correct.item() / total_instances))