def setUp(self): """Setup shared by all tests""" self.train_parser = train.get_parser() self.predict_parser = predict.get_parser() self.ckpt_dir = '/BrainSeg/tmp_checkpoints' self.log_dir = '/BrainSeg/tmp_tf_logs' self.save_dir = '/BrainSeg/tmp_outputs' keras.backend.clear_session() # For easy reset of keras state
def main(): parser = train.get_parser() args = parser.parse_args() os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu if args.SAVE_DIR is None: args.SAVE_DIR = os.environ['HOME'] test_class = TestFramework(args) test_class.prepare_for_test() if args.quant == 1: test_class.run_quantitative_test() else: test_class.run_qualitative_test()
log_interval=50, save_interval=int(num_timesteps / timesteps_per_batch), max_episode_len=max_episode_len) logger.Logger.CURRENT.close() env.close() def main(args): args.exp_name += "-{}".format(args.exp_id) if args.slurm_task_id is not None: args.exp_name += "/{}".format(str(args.slurm_task_id)) from datetime import datetime timestr = datetime.today().strftime("%Y-%m-%d_%H-%M-%S") logdir = os.path.join(args.local_dir, args.exp_name, str(args.slurm_task_id), "MACK_mpe_0" + timestr) train(logdir, args.scenario, args.num_timesteps, args.lr, args.train_batch_size, args.run_id, args.num_envs_per_worker, args.max_episode_len) if __name__ == "__main__": import sys sys.path.insert(0, "/final_log/PycharmProjects/marl-rllib") from train import get_parser parser = get_parser() args = parse_args(parser) main(args)
import numpy as np import matplotlib.pyplot as plt from train import get_parser from ssd.config.defaults import cfg from ssd.data.build import make_data_loader from vizer.draw import draw_boxes from ssd.modeling.box_head.prior_box import PriorBox from ssd.utils import box_utils args = get_parser().parse_args() cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() data_loader = make_data_loader(cfg, is_train=True) mean = np.array([cfg.INPUT.PIXEL_MEAN]).reshape(1, 1, -1) std = np.array([cfg.INPUT.PIXEL_STD]) priors = PriorBox(cfg)() if isinstance(data_loader, list): data_loader = data_loader[0] for img, batch, *_ in data_loader: boxes = batch["boxes"] # SSD Target transform transfers target boxes into prior locations # Have to revert the transformation boxes = box_utils.convert_locations_to_boxes(boxes, priors, cfg.MODEL.CENTER_VARIANCE, cfg.MODEL.SIZE_VARIANCE) boxes = box_utils.center_form_to_corner_form(boxes)
#!/usr/bin/env python """PokerNet simulation suite""" from __future__ import print_function from train import run_simulation, get_parser # Initialize args with program defaults INIT_ARGS = vars(get_parser().parse_args()) def table_one(): """Table 1: Training results for different neuron numbers""" simulation_num = 1 print('\n** Running simulation {} **\n'.format(simulation_num)) table_header = [ 'hidden_neurons', 'learning_rate', 'max_epochs', 'activation', 'hits', 'mse' ] args = INIT_ARGS.copy() args.update({ 'method': 'gdm', 'activation': 'purelin', 'max_epochs': 100, 'learning_rate': 0.001 }) for i in (10, 30, 50): args['hidden_neurons'] = i run_simulation(args, sim_num=simulation_num, header=table_header)
def wrap(parser): return get_parser(parser, required=False)
return tf.keras.Model(inputs=model.input, outputs=output_img) def predict(img, model): pil_img = Image.open(img).convert("RGB").resize((224, 224)) np_imgs = (np.asarray(pil_img) - 127.5) / 128 roi = model.predict(np_imgs.reshape((1, 224, 224, 3))) res = roi[0] space = int((16*7 - 2)/(7 - 1)) x = [space*i for i in range(7)] y = [space*i for i in range(7)] x[-1] = 223 y[-1] = 223 f = interp2d(x, y, res) xx = [i for i in range(224)] yy = [i for i in range(224)] res = f(xx, yy) plt.figure() plt.imshow((np_imgs*128 + 127.5).astype(np.int16)) plt.imshow(res, cmap="seismic", alpha=0.3) plt.show() if __name__ == "__main__": args = train.get_parser().parse_args() model = ACoL_predict(args) predict("/home/yudai/Pictures/raw-img/validation/cow/OIP-0SwWnZTgIxQGLEKAqkSrdwHaFc.jpeg", model)