コード例 #1
0
def main(targets):
    '''
    Runs the main project pipeline logic, given the targets.
    targets must contain: 'data', 'analysis', 'model'.

    `main` runs the targets in order of data=>analysis=>model.
    '''
    start_prog = timeit.default_timer()

    if 'data' in targets:
        with open('config/data-params.json', 'r', encoding="utf-8") as fh:
            data_cfg = json.load(fh)

        # make the data target
        data = clean_data(**data_cfg)

    if 'analysis' in targets:
        with (open('config/analysis-params.json')) as fh:
            analysis_cfg = json.load(fh)

        #make the data target
        X, y = prepare_data(data, **analysis_cfg)

    if 'model' in targets:
        with open('config/model-params.json') as fh:
            model_cfg = json.load(fh)

        # make the data target
        train_data(X, y, **model_cfg)

    stop_prog = timeit.default_timer()
    print("overall runtime: ", stop_prog - start_prog)
    return
コード例 #2
0
ファイル: app.py プロジェクト: sauravchakraborty13069/ineuron
def train():
    path = 'models/'
    if len(os.listdir(path)) == 0:
        train_data(log_writer)
    else:
        pass

    return render_template('index.html')
コード例 #3
0
	def __init__(self, load):
		self.lastPercent = 0.0
		self.bestPercent = 0.0
		if (load != '0'):
			print("\ncreating train data...")
			sys.stdout.flush()
			self.td = train.train_data(files_location)
			pickle.dump(self.td, open("_train_data.p", "wb"))
			print("created sucessfully\n")
			sys.stdout.flush()
		else:
			print("\nloading train data...")
			sys.stdout.flush()
			self.td = pickle.load(open("_train_data.p", "rb"))
			print("loaded sucessfully\n")
			sys.stdout.flush()

		self.nn = nn_matrix.neural_network(len(self.td.inputs[0][0]),len(self.td.authors),nlayers,dummy_var, learn_rate)
コード例 #4
0
def train():
    print('train start')
    data_dir=request.args.get('data_dir')
    train_dir=request.args.get('train_dir')
    train_dir=makeDir(train_dir)
    if train_data(data_dir=data_dir,train_dir=train_dir):
        json_path=os.path.join(data_dir,'state.json')
        json_state={"names":[]}
        filenames=os.listdir(data_dir)
        for filename in filenames:
            extension = os.path.splitext(filename)[1][1:].strip()
            if extension=='bin':
                json_temp={"name":filename}
                json_state['names'].append(json_temp)
        with open(json_path,"w") as outfile :
            json.dump(json_state,outfile)
            print(json_state)
        print('train end')
        return 'true'
コード例 #5
0
 def __init__(self):
     self.there_is_a_winner = False
     self.g = ludopy.Game()
     self.player = None
     self.Q = []
     self.ca = capture_image()
     self.list_winner = []
     self.number_winner_my_player = 0
     self.tr = train_data()
     self.player_last_piece = []
     self.second_player = 0
     self.file_name = ""
     self.file_plyer_hist = ""
     self.type_play = True
     self.winner = 0
     self.my_player_winner = False
     self.gamma_m = 0
     self.alfa_m = 0
     self.percentage = []
     self.epsilon = 0
コード例 #6
0
def summary():
    print("summary")
    train_data()
    test_data()
    ans_data()
    print("train2emb模型运行完成")
コード例 #7
0
from train import train
from predict import predict_data
from train import train_data
import numpy as np
import pandas as pd
#from lightgbm import LGBMClassifier
#est_bin是做了每个特征dbscan分箱
#train_x,train_y,est_kbin = train_data()
train_x, train_y = train_data()
train_x.drop(
    [
        'lat_var_skew',
        'lon_var_skew',
        'velocity_var_skew',
        'velocity_var_covar',
        'angle_var_mean',
        'computed_angle_var_mean',
        'computed_angle_var_skew',
        'computed_angle_var_covar',
        #'angle_var_velocity_cov'
    ],
    axis=1,
    inplace=True)

#构建测试集数据
#test_x,test_id = predict_data(est_kbin)
test_x, test_id = predict_data()
test_x.drop(
    [
        'lat_var_skew',
        'lon_var_skew',
コード例 #8
0
ファイル: main.py プロジェクト: Testispuncher/pubclustering
#!/usr/bin/env python3 -W ignore::DeprecationWarning

import sys
import warnings

from fetch import fetch_data
from train import train_data

# suppress all warnings
warnings.filterwarnings("ignore")

if __name__ == "__main__":

    fetch_obj = fetch_data(data_type=0)
    test_obj = fetch_data(data_type=1)
    train_obj = train_data(fetch_obj.label_df, fetch_obj.pseudo_df,
                           test_obj.unlabel_df)
    # apply a tf-idf model with SVD
    combine_data = [*train_obj.labeled_data, *train_obj.pseudo_data]
    train_obj.fit_vectorizer(combine_data,
                             min_df=0.010,
                             max_df=0.8,
                             ngram_range=(1, 2),
                             svd=True)
    # using lda
    train_obj.train_model()
    # test data
    train_obj.fit_vectorizer(train_obj.test_data,
                             min_df=0.010,
                             max_df=0.8,
                             ngram_range=(1, 2),
                             svd=True,
コード例 #9
0
ファイル: app.py プロジェクト: sauravchakraborty13069/ineuron
def train():
    train_data()
    return render_template('index.html')
コード例 #10
0
def train():

    train_data(log_writer)

    return render_template('index.html')
コード例 #11
0
ファイル: app.py プロジェクト: sauravchakraborty13069/ineuron
def train():
    train_data(log_writer)
    return render_template('results.html')
コード例 #12
0
ファイル: main.py プロジェクト: pranv12/python_face_detect
def capture():
    t = train_data()
    t.record()
コード例 #13
0
ファイル: topics.py プロジェクト: bharadwajanup/AI_Learning
        line = ' '.join(string_formatter)
        fp.write(line)
        fp.write(linesep)
    fp.close()


if mode == "train":
    if len(argv) != 5:
        print(
            "USAGE: python topics.py mode dataset-directory model-file [fraction]"
        )
        exit(1)
    fraction = float(argv[4])
    print("Training started.")
    print("Please wait as it could take a while to create model...")
    model = train.train_data(dataset_dir, fraction)
    write_top_words_to_file(model, "distinctive_words.txt")
    print("Top 10 words at each topic is written into distinctive_words.txt.")
    serialize_model(model, model_file)
    print("Model File created")
    exit(0)

if mode == "test":
    model = deserialize_model(model_file)
    print("Model loaded successfully.")
    result = test.test_data(model, dataset_dir)
    print(result)
    exit(0)

print("Operation not supported")
exit(1)