step = int(cp.split('.')[-2].split('_')[-1]) except: step = 0 test_abs(args, device_id, cp, step) elif (args.mode == 'test_text'): cp = args.test_from try: step = int(cp.split('.')[-2].split('_')[-1]) except: step = 0 test_text_abs(args, device_id, cp, step) elif (args.task == 'ext'): if (args.mode == 'train'): # print('joint: ' + str(args.section_prediction)) train_ext(args, device_id, args.section_prediction) elif (args.mode == 'validate'): validate_ext(args, device_id) if (args.mode == 'test'): cp = args.test_from try: step = int(cp.split('.')[-2].split('_')[-1]) except: step = 0 test_ext(args, device_id, cp, step, args.section_prediction) elif (args.mode == 'test_text'): cp = args.test_from try: step = int(cp.split('.')[-2].split('_')[-1]) except: step = 0
try: step = int(cp.split('.')[-2].split('_')[-1]) except: step = 0 test_abs(args, device_id, cp, step) elif (args.mode == 'test_text'): cp = args.test_from try: step = int(cp.split('.')[-2].split('_')[-1]) except: step = 0 test_text_abs(args, device_id, cp, step) elif (args.task == 'ext'): if (args.mode == 'train'): train_ext(args, device_id) elif (args.mode == 'validate'): validate_ext(args, device_id) if (args.mode == 'test'): cp = args.test_from try: step = int(cp.split('.')[-2].split('_')[-1]) except: step = 0 test_ext(args, device_id, cp, step) elif (args.mode == 'test_text'): cp = args.test_from try: step = int(cp.split('.')[-2].split('_')[-1]) except: step = 0
def run(args, hpspace): if (args.task == 'abs'): if (args.mode == 'train'): if (args.hyperopt): t = time.time() newT = str(t).split(".") args.model_path = "../models/" + newT[0] args.log_file = "../logs/abs_bert_abs_" + newT[0] args.lr_bert = hpspace['lr_bert'] args.lr_dec = hpspace['lr_dec'] args.accum_count = int(hpspace['accum_count']) args.beta1 = hpspace['beta1'] args.beta2 = hpspace['beta2'] args.visible_gpus = '0' args.bert_model = '..temp/bert-base-danish-uncased-v2' args.vocab = '..temp/bert-base-danish-uncased-v2' train_stats = train_abs(args, device_id) x = train_stats.x ppl = train_stats.perplexity acc = train_stats.acc print(x) return { 'loss': x, 'eval_time': time.time(), 'status': STATUS_OK, 'other_stuff': { 'ppl': ppl, 'acc': acc } } elif (args.mode == 'validate'): validate_abs(args, device_id) elif (args.mode == 'lead'): baseline(args, cal_lead=True) elif (args.mode == 'oracle'): baseline(args, cal_oracle=True) if (args.mode == 'test'): cp = args.test_from try: step = int(cp.split('.')[-2].split('_')[-1]) except: step = 0 test_abs(args, device_id, cp, step) elif (args.mode == 'test_text'): cp = args.test_from try: step = int(cp.split('.')[-2].split('_')[-1]) except: step = 0 test_text_abs(args, device_id, cp, step) elif (args.task == 'ext'): if (args.mode == 'train'): train_ext(args, device_id) elif (args.mode == 'validate'): validate_ext(args, device_id) if (args.mode == 'test'): cp = args.test_from try: step = int(cp.split('.')[-2].split('_')[-1]) except: step = 0 test_ext(args, device_id, cp, step) elif (args.mode == 'test_text'): cp = args.test_from try: step = int(cp.split('.')[-2].split('_')[-1]) except: step = 0 test_text_abs(args, device_id, cp, step) if (args.mode == "sent_label"): step = 0 sent_label_ext(args, device_id)