コード例 #1
0
def get_fps(detector, i, fileobj, size):
    ag.info('{0} Initial processing {1}'.format(i, fileobj.img_id))
    gen = generate_random_patches([fileobj.path], size, per_image=PER_IMAGE)
    neg_feats = []

    radii = detector.settings['spread_radii']
    psize = detector.settings['subsample_size']
    rotspread = detector.settings.get('rotation_spreading_radius', 0)
    cb = detector.settings.get('crop_border')
    setts = dict(spread_radii=radii, subsample_size=psize, rotation_spreading_radius=rotspread, crop_border=cb)

    for neg in itr.islice(gen, PER_IMAGE):
        #images.append(neg)
        feat = detector.descriptor.extract_features(neg, settings=setts)
        neg_feats.append(feat)

    return neg_feats
コード例 #2
0
import os.path
import glob
import numpy as np
import amitgroup as ag
import itertools
from scipy.stats import mstats
from train_superimposed import generate_random_patches
from settings import load_settings

settings = load_settings(settings_file)
descriptor = gv.load_descriptor(settings)

path = os.path.expandvars(settings['detector']['neg_dir'])
files = sorted(glob.glob(path))

gen = generate_random_patches(files, (100, 100), seed=0, per_image=5)

cut = 4
radii = settings['detector']['spread_radii']
psize = settings['detector']['subsample_size']

mm = []

for i, im in itertools.islice(enumerate(gen), limit):
    print 'Processing {}'.format(i)
    feats = descriptor.extract_features(im, settings=dict(spread_radii=radii, subsample_size=psize, crop_border=cut))

    m = feats.mean()
    mm.append(m)

import matplotlib.pylab as plt