コード例 #1
0
def main(arguments):
    model_parameters = {
        'scale': arguments['scale'],
        'learning_rate': 1e-5,
        'D': arguments['D'],
        'C': arguments['C'],
        'G': arguments['G'],
        'kernel_size': 3,
        'c_dim': 3,
        'G0': arguments['G0'],
    }

    model = load_model(model_parameters, arguments['vgg'], verbose=arguments['verbose'])

    if arguments['summary'] is True:
        model.rdn.summary()

    if arguments['train'] is True:
        from trainer.train import Trainer

        trainer = Trainer(train_arguments=arguments)
        trainer.train_model(model)

    if arguments['test'] is True:
        from predict import Predictor

        predictor = Predictor(test_arguments=arguments)
        predictor.get_predictions(model)
コード例 #2
0
    def test_if_trainable_weights_update_with_one_step(self):
        self.scale = self.model_params['scale']
        self.img_size = {'HR': 10 * self.scale, 'LR': 10}
        self.dataset_size = 8
        self.create_random_dataset(type='correct')

        before_step = []
        for layer in self.model.rdn.layers:
            if len(layer.trainable_weights) > 0:
                before_step.append(layer.get_weights()[0])

        train_arguments = {
            'validation_labels': self.dataset_folder['correct']['HR'],
            'validation_input': self.dataset_folder['correct']['LR'],
            'training_labels': self.dataset_folder['correct']['HR'],
            'training_input': self.dataset_folder['correct']['LR'],
        }
        cl_args = ['--pytest', '--no_verbose']
        parser = get_parser()
        cl_args = parser.parse_args(cl_args)
        cl_args = vars(cl_args)
        load_configuration(cl_args, '../config.json')
        cl_args.update(train_arguments)
        trainer = Trainer(train_arguments=cl_args)

        i = 0
        for layer in self.model.rdn.layers:
            if len(layer.trainable_weights) > 0:
                self.assertTrue(
                    np.all(before_step[i] == layer.get_weights()[0]))
                i += 1

        trainer.train_model(self.model)

        i = 0
        for layer in self.model.rdn.layers:
            if len(layer.trainable_weights) > 0:
                self.assertFalse(
                    np.all(before_step[i] == layer.get_weights()[0]))
                i += 1