コード例 #1
0
def inference():
    thandler = trainer.handler(args.process_command())

    rt_data = rt()
    data = trainer.load_data(rt_data.data, data_type=rt_data.data_type)
    test_loader = data

    model_ = models.MLP(300, classes=2)
    #print(model_)
    total = sum(p.numel() for p in model_.parameters() if p.requires_grad)
    print('# of para: {}'.format(total))

    model_name = 'MLP.pt'

    predicted = thandler.predict(model_, test_loader, model_name)

    print([np.argmax(np.array(i)) for i in predicted])
コード例 #2
0
        train_x = torch.LongTensor(self.process(train_x))
        dev_x = torch.LongTensor(self.process(dev_x))
        test_x = torch.LongTensor(self.process(test_x))

        print(train_x.shape)
        print(dev_x.shape)
        print(test_x.shape)

        return (train_x, torch.LongTensor(train_y)), (
            dev_x, torch.LongTensor(dev_y)), (test_x, torch.LongTensor(test_y))


if __name__ == '__main__':
    rt = rt()
    handler = trainer.handler()

    #data preprocess
    training, valid, testing = rt.simple_data()
    train_loader = handler.torch_data(training)
    valid_loader = handler.torch_data(valid)
    test_loader = handler.torch_data(testing)

    import model
    trial = handler.trial
    scores = []
    for i in range(trial):
        #setting
        model_ = model.BertCls(BertModel, rt.weight, handler.trainable)
        model_name = 'model_' + str(i) + '.pt'
        model_path = handler.save + model_name
コード例 #3
0
import args
import rt_data as rt
import sys
import torch
import torch_model as models
import training_handler
import util

from tensorflow import keras
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score

thandler = training_handler.handler(args.process_command())


def RUN_SVC(data):
    print('SVC')
    (train_data, train_labels), (test_data, test_labels) = data

    clf = SVC(C=0.1, gamma='auto')
    clf.fit(util.padding(train_data), train_labels)
    y_pred = clf.predict(util.padding(test_data))
    print('Accuracy: {}'.format(accuracy_score(test_labels, y_pred)))


def data_loader(data_, data_type=[torch.LongTensor, torch.LongTensor]):
    (train_data, train_labels), (test_data, test_labels) = data_

    train_size = int(len(train_data) * 0.1)

    valid_data = train_data[:train_size]