class MarketMap(DOMWidget): """Waffle wrapped map. Attributes ---------- names: numpy.ndarray of strings (default: []) The elements can also be objects convertible to string primary key for the map data. A rectangle is created for each unique entry in this array groups: numpy.ndarray (default: []) attribute on which the groupby is run. If this is an empty arrray, then there is no group by for the map. display_text: numpy.ndarray or None(default: None) data to be displayed on each rectangle of the map.If this is empty it defaults to the names attribute. ref_data: pandas.DataDrame or None (default: None) Additional data associated with each element of the map. The data in this data frame can be displayed as a tooltip. color: numpy.ndarray (default: []) Data to represent the color for each of the cells. If the value of the data is NaN for a cell, then the color of the cell is the color of the group it belongs to in absence of data for color scales: Dictionary of scales holding a scale for each data attribute If the map has data being passed as color, then a corresponding color scale is required axes: List of axes Ability to add an axis for the scales which are used to scale data represented in the map on_hover: custom event This event is received when the mouse is hovering over a cell. Returns the data of the cell and the ref_data associated with the cell. tooltip_widget: Instance of a widget Widget to be displayed as the tooltip. This can be combined with the on_hover event to display the chart corresponding to the cell being hovered on. tooltip_fields: list names of the fields from the ref_data dataframe which should be displayed in the tooltip. tooltip_formats: list formats for each of the fields for the tooltip data. Order should match the order of the tooltip_fields show_groups: bool attribute to determine if the groups should be displayed. If set to True, the finer elements are blurred Map Drawing Attributes cols: int Suggestion for no of columns in the map.If not specified, value is inferred from the no of rows and no of cells rows: int No of rows in the map.If not specified, value is inferred from the no of cells and no of columns. If both rows and columns are not specified, then a square is constructed basing on the no of cells. The above two attributes are suggestions which are respected unless they are not feasible. One required condition is that, the number of columns is odd when row_groups is greater than 1. row_groups: int No of groups the rows should be divided into. This can be used to draw more square cells for each of the groups Layout Attributes map_margin: dict (default: {top=50, bottom=50, left=50, right=50}) Dictionary containing the top, bottom, left and right margins. The user is responsible for making sure that the width and height are greater than the sum of the margins. min_aspect_ratio: float minimum width / height ratio of the figure max_aspect_ratio: float maximum width / height ratio of the figure Display Attributes colors: list of colors Colors for each of the groups which are cycled over to cover all the groups title: string Title of the Market Map title_style: dict CSS style for the title of the Market Map stroke: color Stroke of each of the cells of the market map group_stroke: color Stroke of the border for the group of cells corresponding to a group selected_stroke: color stroke for the selected cells hovered_stroke: color stroke for the cell being hovered on font_style: dict CSS style for the text of each cell Other Attributes enable_select: bool boolean to control the ability to select the cells of the map by clicking enable_hover: bool boolean to control if the map should be aware of which cell is being hovered on. If it is set to False, tooltip will not be displayed Note ---- The aspect ratios stand for width / height ratios. - If the available space is within bounds in terms of min and max aspect ratio, we use the entire available space. - If the available space is too oblong horizontally, we use the client height and the width that corresponds max_aspect_ratio (maximize width under the constraints). - If the available space is too oblong vertically, we use the client width and the height that corresponds to min_aspect_ratio (maximize height under the constraint). This corresponds to maximizing the area under the constraints. Default min and max aspect ratio are both equal to 16 / 9. """ names = Array([]).tag(sync=True, **array_serialization) groups = Array([]).tag(sync=True, **array_serialization) display_text = Array(None, allow_none=True).tag(sync=True, **array_serialization) ref_data = DataFrame(None, allow_none=True).tag(sync=True, **dataframe_serialization).valid(dataframe_warn_indexname) title = Unicode().tag(sync=True) tooltip_fields = List().tag(sync=True) tooltip_formats = List().tag(sync=True) show_groups = Bool().tag(sync=True) cols = Int(allow_none=True).tag(sync=True) rows = Int(allow_none=True).tag(sync=True) row_groups = Int(1).tag(sync=True) colors = List(CATEGORY10).tag(sync=True) scales = Dict().tag(sync=True, **widget_serialization) axes = List().tag(sync=True, **widget_serialization) color = Array([]).tag(sync=True, **array_serialization) map_margin = Dict(dict(top=50, right=50, left=50, bottom=50)).tag(sync=True) layout = Instance(Layout, kw={ 'min_width': '125px' }, allow_none=True).tag(sync=True, **widget_serialization) min_aspect_ratio = Float(1.0).tag(sync=True) # Max aspect ratio is such that we can have 3 charts stacked vertically # on a 16:9 monitor: 16/9*3 ~ 5.333 max_aspect_ratio = Float(6.0).tag(sync=True) stroke = Color('white').tag(sync=True) group_stroke = Color('black').tag(sync=True) selected_stroke = Color('dodgerblue', allow_none=True).tag(sync=True) hovered_stroke = Color('orangered', allow_none=True).tag(sync=True) font_style = Dict().tag(sync=True) title_style = Dict().tag(sync=True) selected = List().tag(sync=True) enable_hover = Bool(True).tag(sync=True) enable_select = Bool(True).tag(sync=True) tooltip_widget = Instance(DOMWidget, allow_none=True, default_value=None).tag(sync=True, **widget_serialization) def __init__(self, **kwargs): super(MarketMap, self).__init__(**kwargs) self._hover_handlers = CallbackDispatcher() self.on_msg(self._handle_custom_msgs) def on_hover(self, callback, remove=False): self._hover_handlers.register_callback(callback, remove=remove) def _handle_custom_msgs(self, _, content, buffers=None): if content.get('event', '') == 'hover': self._hover_handlers(self, content) def _compare(self, a, b): # Compare dataframes properly import pandas as pd if isinstance(a, pd.DataFrame) or isinstance(b, pd.DataFrame): return pd.DataFrame.equals(a,b) return super(MarketMap, self)._compare(a, b) _view_name = Unicode('MarketMap').tag(sync=True) _model_name = Unicode('MarketMapModel').tag(sync=True) _view_module = Unicode('bqplot').tag(sync=True) _model_module = Unicode('bqplot').tag(sync=True) _view_module_version = Unicode(__frontend_version__).tag(sync=True) _model_module_version = Unicode(__frontend_version__).tag(sync=True)
class Foo(HasTraits): bar = DataFrame() baz = DataFrame(allow_none=True)
class Foo(HasTraits): bar = DataFrame([1, 2]) @observe('bar') def _(self, change): notifications.append(change)
class Foo(HasTraits): a = DataFrame() b = DataFrame(None, allow_none=True) c = DataFrame([]) d = DataFrame(Undefined)
class MarketMap(DOMWidget): """Waffle wrapped map. Attributes ---------- names: numpy.ndarray of strings (default: []) The elements can also be objects convertible to string primary key for the map data. A rectangle is created for each unique entry in this array groups: numpy.ndarray (default: []) attribute on which the groupby is run. If this is an empty arrray, then there is no group by for the map. display_text: numpy.ndarray or None(default: None) data to be displayed on each rectangle of the map.If this is empty it defaults to the names attribute. ref_data: pandas.DataDrame or None (default: None) Additional data associated with each element of the map. The data in this data frame can be displayed as a tooltip. color: numpy.ndarray (default: []) Data to represent the color for each of the cells. If the value of the data is NaN for a cell, then the color of the cell is the color of the group it belongs to in absence of data for color scales: Dictionary of scales holding a scale for each data attribute If the map has data being passed as color, then a corresponding color scale is required axes: List of axes Ability to add an axis for the scales which are used to scale data represented in the map on_hover: custom event This event is received when the mouse is hovering over a cell. Returns the data of the cell and the ref_data associated with the cell. tooltip_widget: Instance of a widget Widget to be displayed as the tooltip. This can be combined with the on_hover event to display the chart corresponding to the cell being hovered on. tooltip_fields: list names of the fields from the ref_data dataframe which should be displayed in the tooltip. tooltip_formats: list formats for each of the fields for the tooltip data. Order should match the order of the tooltip_fields show_groups: bool attribute to determine if the groups should be displayed. If set to True, the finer elements are blurred Map Drawing Attributes map_width: int minimum width of the entire map map_height: int minimum height of the entire map map_margin: dict margin for the market map plot area with respect to the entire display area preserve_aspect: bool boolean to control if the aspect ratio should be preserved or not during a resize cols: int Suggestion for no of columns in the map.If not specified, value is inferred from the no of rows and no of cells rows: int No of rows in the map.If not specified, value is inferred from the no of cells and no of columns. If both rows and columns are not specified, then a square is constructed basing on the no of cells. The above two attributes are suggestions which are respected unless they are not feasible. One required condition is that, the number of columns is odd when row_groups is greater than 1. row_groups: int No of groups the rows should be divided into. This can be used to draw more square cells for each of the groups Display Attributes colors: list of colors Colors for each of the groups which are cycled over to cover all the groups title: string Title of the Market Map title_style: dict CSS style for the title of the Market Map stroke: color Stroke of each of the cells of the market map group_stroke: color Stroke of the border for the group of cells corresponding to a group selected_stroke: color stroke for the selected cells hovered_stroke: color stroke for the cell being hovered on font_style: dict CSS style for the text of each cell Other Attributes enable_select: bool boolean to control the ability to select the cells of the map by clicking enable_hover: bool boolean to control if the map should be aware of which cell is being hovered on. If it is set to False, tooltip will not be displayed """ map_width = Int(1080).tag(sync=True) map_height = Int(800).tag(sync=True) names = Array([]).tag(sync=True, **array_serialization) groups = Array([]).tag(sync=True, **array_serialization) display_text = Array(None, allow_none=True).tag(sync=True, **array_serialization) ref_data = DataFrame(None, allow_none=True).tag( sync=True, **dataframe_serialization).valid(dataframe_warn_indexname) title = Unicode().tag(sync=True) tooltip_fields = List().tag(sync=True) tooltip_formats = List().tag(sync=True) show_groups = Bool().tag(sync=True) cols = Int(allow_none=True).tag(sync=True) rows = Int(allow_none=True).tag(sync=True) row_groups = Int(1).tag(sync=True) colors = List(CATEGORY10).tag(sync=True) scales = Dict().tag(sync=True, **widget_serialization) axes = List().tag(sync=True, **widget_serialization) color = Array([]).tag(sync=True, **array_serialization) map_margin = Dict(dict(top=50, right=50, left=50, bottom=50)).tag(sync=True) preserve_aspect = Bool().tag(sync=True, display_name='Preserve aspect ratio') stroke = Color('white').tag(sync=True) group_stroke = Color('black').tag(sync=True) selected_stroke = Color('dodgerblue').tag(sync=True) hovered_stroke = Color('orangered').tag(sync=True) font_style = Dict().tag(sync=True) title_style = Dict().tag(sync=True) selected = List().tag(sync=True) enable_hover = Bool(True).tag(sync=True) enable_select = Bool(True).tag(sync=True) tooltip_widget = Instance(DOMWidget, allow_none=True, default_value=None).tag(sync=True, **widget_serialization) def __init__(self, **kwargs): super(MarketMap, self).__init__(**kwargs) self._hover_handlers = CallbackDispatcher() self.on_msg(self._handle_custom_msgs) def on_hover(self, callback, remove=False): self._hover_handlers.register_callback(callback, remove=remove) def _handle_custom_msgs(self, _, content, buffers=None): if content.get('event', '') == 'hover': self._hover_handlers(self, content) _view_name = Unicode('MarketMap').tag(sync=True) _model_name = Unicode('MarketMapModel').tag(sync=True) _view_module = Unicode('bqplot').tag(sync=True) _model_module = Unicode('bqplot').tag(sync=True)