def test_ast_plan_strategy(requests_mock): set_mock(requests_mock, "workflow-5") print("test_ast_plan_strategy ()") tranql = TranQL() tranql.resolve_names = False # QueryPlanStrategy always uses /schema regardless of the `FROM` clause. ast = tranql.parse(""" SELECT cohort_diagnosis:disease->diagnoses:disease FROM '/schema' WHERE cohort_diagnosis = 'MONDO:0004979' --asthma AND Sex = '0' AND cohort = 'all_patients' AND max_p_value = '0.5' SET '$.knowledge_graph.nodes.[*].id' AS diagnoses """) select = ast.statements[0] plan = select.planner.plan(select.query) # Assert that it has planned to query both gamma and rtx assert ((plan[0][1] == "/graph/gamma/quick" and plan[1][1] == "/graph/rtx") or (plan[1][1] == "/graph/rtx" and plan[1][1] == "/graph/gamma/quick")) # Both should be querying the same thing (disease->diseasee), differing only in the sub_schema that they are querying for sub_schema_plan in plan: assert sub_schema_plan[2][0][0].type_name == "disease" assert sub_schema_plan[2][0][0].name == "cohort_diagnosis" assert sub_schema_plan[2][0][0].nodes == ["MONDO:0004979"] assert sub_schema_plan[2][0][1].direction == "->" assert sub_schema_plan[2][0][1].predicate == None assert sub_schema_plan[2][0][2].type_name == "disease" assert sub_schema_plan[2][0][2].name == "diagnoses" assert sub_schema_plan[2][0][2].nodes == []
def test_ast_bidirectional_query (requests_mock): set_mock(requests_mock, "workflow-5") """ Validate that we parse and generate queries correctly for bidirectional queries. """ print ("test_ast_bidirectional_query ()") app = TranQL () app.resolve_names = False disease_id = "MONDO:0004979" chemical = "PUBCHEM:2083" app.context.set ("drug", chemical) app.context.set ("disease", disease_id) mocker = MockHelper () expectations = { "cop.tranql" : mocker.get_obj ("bidirectional_question.json") } queries = { os.path.join (os.path.dirname (__file__), "..", "queries", k) : v for k, v in expectations.items () } for program, expected_output in queries.items (): ast = app.parse_file (program) statement = ast.statements """ This uses an unfortunate degree of knowledge about the implementation, both of the AST, and of theq query. Consider alternatives. """ questions = ast.statements[2].generate_questions (app) nodes = questions[0]['question_graph']['nodes'] edges = questions[0]['question_graph']['edges'] node_index = { n['id'] : i for i, n in enumerate (nodes) } assert nodes[-1]['curie'] == disease_id assert nodes[0]['curie'] == chemical assert node_index[edges[-1]['target_id']] == node_index[edges[-1]['source_id']] - 1
def assert_parse_tree(code, expected): """ Parse a block of code into a parse tree. Then assert the equality of that parse tree to a list of expected tokens. """ tranql = TranQL() tranql.resolve_names = False actual = tranql.parser.parse(code).parse_tree #print (f"{actual}") assert_lists_equal(actual, expected)
def test_ast_set_graph (requests_mock): set_mock(requests_mock, "workflow-5") """ Set a variable to a graph passed as a result. """ print ("test_ast_set_graph ()") tranql = TranQL () tranql.resolve_names = False statement = SetStatement (variable="variable", value=None, jsonpath_query=None) statement.execute (tranql, context={ 'result' : { "a" : 1 } }) assert tranql.context.resolve_arg ("$variable")['a'] == 1
def test_ast_set_variable (requests_mock): set_mock(requests_mock, "workflow-5") """ Test setting a varaible to an explicit value. """ print ("test_ast_set_variable ()") tranql = TranQL () tranql.resolve_names = False statement = SetStatement (variable="variable", value="x") statement.execute (tranql) assert tranql.context.resolve_arg ("$variable") == 'x'
def test_ast_set_graph(requests_mock): set_mock(requests_mock, "workflow-5") """ Set a variable to the value returned by executing a JSONPath query. """ print("test_ast_set_graph ()") tranql = TranQL() tranql.resolve_names = False statement = SetStatement(variable="variable", value=None, jsonpath_query="$.nodes.[*]") statement.execute(tranql, context={'result': {"nodes": [{"id": "x:y"}]}}) assert tranql.context.resolve_arg("$variable")[0]['id'] == "x:y"
def test_ast_plan_statements (requests_mock): set_mock(requests_mock, "workflow-5") print("test_ast_plan_statements ()") tranql = TranQL () tranql.resolve_names = False # QueryPlanStrategy always uses /schema regardless of the `FROM` clause. ast = tranql.parse (""" SELECT cohort_diagnosis:disease->diagnoses:disease FROM '/schema' WHERE cohort_diagnosis = 'MONDO:0004979' --asthma AND Sex = '0' AND cohort = 'all_patients' AND max_p_value = '0.5' SET '$.knowledge_graph.nodes.[*].id' AS diagnoses """) select = ast.statements[0] statements = select.plan (select.planner.plan (select.query)) assert len(statements) == 2 for statement in statements: assert_lists_equal( list(statement.query.concepts.keys()), [ "cohort_diagnosis", "diagnoses" ] ) assert statement.query.concepts['cohort_diagnosis'].nodes == ["MONDO:0004979"] assert statement.query.concepts['diagnoses'].nodes == [] # TODO: figure out why there are duplicates generated?? assert_lists_equal(statement.where, [ ['cohort_diagnosis', '=', 'MONDO:0004979'], ['Sex', '=', '0'], ['Sex', '=', '0'], ['cohort', '=', 'all_patients'], ['cohort', '=', 'all_patients'], ['max_p_value', '=', '0.5'], ['max_p_value', '=', '0.5'] ]) assert statement.set_statements == [] assert ( (statements[0].service == "/graph/gamma/quick" and statements[1].service == "/graph/rtx") or (statements[0].service == "/graph/rtx" and statements[1].service == "/graph/gamma/quick") )
def test_interpreter_set (requests_mock): set_mock(requests_mock, "workflow-5") """ Test set statements by executing a few and checking values after. """ print ("test_interpreter_set ()") tranql = TranQL () tranql.resolve_names = False tranql.execute (""" -- Test set statements. SET disease = 'asthma' SET max_p_value = '0.5' SET cohort = 'COHORT:22' SET population_density = 2 SET icees.population_density_cluster = 'http://localhost/ICEESQuery' SET gamma.quick = 'http://robokop.renci.org:80/api/simple/quick/' """) variables = [ "disease", "max_p_value", "cohort", "icees.population_density_cluster", "gamma.quick" ] output = { k : tranql.context.resolve_arg (f"${k}") for k in variables } #print (f"resolved variables --> {json.dumps(output, indent=2)}") assert output['disease'] == "asthma" assert output['cohort'] == "COHORT:22"
def test_ast_generate_questions (requests_mock): set_mock(requests_mock, "workflow-5") """ Validate that -- named query concepts work. -- the question graph is build incorporating where clause constraints. """ print ("test_ast_set_generate_questions ()") app = TranQL () app.resolve_names = False ast = app.parse (""" SELECT cohort_diagnosis:disease->diagnoses:disease FROM '/clinical/cohort/disease_to_chemical_exposure' WHERE cohort_diagnosis = 'MONDO:0004979' --asthma AND Sex = '0' AND cohort = 'all_patients' AND max_p_value = '0.5' SET '$.knowledge_graph.nodes.[*].id' AS diagnoses """) questions = ast.statements[0].generate_questions (app) assert questions[0]['question_graph']['nodes'][0]['curie'] == 'MONDO:0004979' assert questions[0]['question_graph']['nodes'][0]['type'] == 'disease'
def test_ast_merge_results (requests_mock): set_mock(requests_mock, "workflow-5") """ Validate that -- Results from the query plan are being merged together correctly """ print("test_ast_merge_answers ()") tranql = TranQL () tranql.resolve_names = False ast = tranql.parse (""" SELECT cohort_diagnosis:disease->diagnoses:disease FROM '/clinical/cohort/disease_to_chemical_exposure' WHERE cohort_diagnosis = 'MONDO:0004979' --asthma AND Sex = '0' AND cohort = 'all_patients' AND max_p_value = '0.5' SET '$.knowledge_graph.nodes.[*].id' AS diagnoses """) select = ast.statements[0] # What is the proper format for the name of a mock file? This should be made into one mock_responses = [ { 'knowledge_graph': { 'nodes': [ {'id': 'CHEBI:28177', 'type': 'chemical_substance'}, {'id': 'HGNC:2597', 'type': 'gene'}, { 'id': 'egg', 'name':'test_name_merge', 'type': 'foo_type', 'test_attr': ['a','b'] }, { 'id': 'equivalent_identifier_merge', 'equivalent_identifiers': ['TEST:00000'], 'merged_property': [ 'a', 'b' ] } ], 'edges': [ {'id': 'e0', 'source_id': 'CHEBI:28177', 'target_id': 'HGNC:2597'}, { # Test if edges that are connected to merged nodes will be successfully merged with other duplicate edges 'source_id' : 'CHEBI:28177', 'target_id' : 'egg', 'type': ['merge_this'], 'merge_this_list' : ['edge_1'], 'unique_attr_e_1' : 'e_1', 'id' : 'winning_edge_id' }, ] }, 'knowledge_map': [ { 'node_bindings': { 'chemical_substance': 'CHEBI:28177', 'gene': 'HGNC:2597' }, 'edge_bindings': {} } ] }, { 'knowledge_graph': { 'nodes': [ {'id': 'CHEBI:28177', 'type': 'chemical_substance'}, { 'id': 'also_test_array_type_and_string_type_merge', 'name':'test_name_merge', 'type': ['foo_type','bar_type'], 'test_attr': ['a','c'] }, {'id': 'TEST:00000', 'type': 'test', 'merged_property': ['a','c']}, ], 'edges': [ {'id': 'e0', 'source_id': 'CHEBI:28177', 'target_id': 'TEST:00000'}, { 'source_id' : 'CHEBI:28177', 'target_id' : 'also_test_array_type_and_string_type_merge', 'type': ['merge_this'], 'merge_this_list' : ['edge_2'], 'unique_attr_e_2' : 'e_2' } ] }, 'knowledge_map': [ { 'node_bindings': { 'chemical_substance': 'CHEBI:28177', 'test': 'TEST:00000' }, 'edge_bindings': {} } ] } ] expected_result = { "knowledge_graph": { "edges": [ { "id": "e0", "source_id": "CHEBI:28177", "target_id": "HGNC:2597", "type": [] }, { "id": "e0", "source_id": "CHEBI:28177", "target_id": "equivalent_identifier_merge", "type": [] }, { "id" : "winning_edge_id", "source_id" : "CHEBI:28177", "target_id" : "egg", "type" : ["merge_this"], "merge_this_list" : ["edge_1", "edge_2"], "unique_attr_e_1" : "e_1", "unique_attr_e_2" : "e_2" } ], "nodes": [ { "equivalent_identifiers": [ "CHEBI:28177" ], "id": "CHEBI:28177", "type": ["chemical_substance"] }, { "equivalent_identifiers": [ "HGNC:2597" ], "id": "HGNC:2597", "type": ["gene"] }, { "equivalent_identifiers": [ "also_test_array_type_and_string_type_merge", "egg" ], "type": [ "foo_type", "bar_type" ], "id": "egg", "name": "test_name_merge", "test_attr": [ "a", "b", "c" ] }, { "equivalent_identifiers": [ "TEST:00000", "equivalent_identifier_merge" ], "merged_property": ["a", "b", "c"], "id": "equivalent_identifier_merge", "type": ["test"] } ] }, "knowledge_map": [ { "edge_bindings": {}, "node_bindings": { "chemical_substance": "CHEBI:28177", "gene": "HGNC:2597" } }, { "edge_bindings": {}, "node_bindings": { "chemical_substance": "CHEBI:28177", "test": "equivalent_identifier_merge" } } ], 'question_graph': { 'edges': [ { 'id': 'foo', 'type': 'test' } ], 'nodes': [ { 'id': 'bar', 'type': 'bartest' } ] } } merged_results = select.merge_results ( mock_responses, tranql, { 'edges': [ { 'id': 'foo', 'type': 'test' } ], 'nodes': [ { 'id': 'bar', 'type': 'bartest' } ] }, root_order=None ) assert ordered(merged_results) == ordered(expected_result)
def test_ast_merge_knowledge_maps (requests_mock): set_mock(requests_mock, "workflow-5") tranql = TranQL () tranql.asynchronous = False tranql.resolve_names = False ast = tranql.parse (""" select chemical_substance->disease->gene from "/schema" where chemical_substance="CHEMBL:CHEMBL3" """) # select = ast.statements[0] # statements = select.plan (select.planner.plan (select.query)) # print(statements[0].query.order) # (select.execute_plan(tranql)) responses = [ { 'knowledge_map' : [ { 'node_bindings' : { 'chemical_substance' : 'CHEBI:100', 'disease' : 'MONDO:50' }, 'edge_bindings' : { 'e0' : 'ROOT_EDGE' } } ], 'question_order' : ['chemical_substance','disease'] }, { 'knowledge_map' : [ { 'node_bindings' : { 'disease' : 'MONDO:50', 'gene' : 'HGNC:1', 'metabolite' : 'KEGG:C00017' }, 'edge_bindings' : { 'e1' : 'TEST_EDGE' } } ], 'question_order' : ['disease','gene','metabolite'] }, { 'knowledge_map' : [ { 'node_bindings' : { 'disease' : 'MONDO:50', 'gene' : 'HGNC:1', 'metabolite' : 'KEGG:FOOBAR' }, 'edge_bindings' : { } } ], 'question_order' : ['disease','gene','metabolite'] }, { 'knowledge_map' : [ { 'node_bindings' : { 'metabolite' : 'KEGG:FOOBAR', 'protein' : 'UniProtKB:TESTING' }, 'edge_bindings' : { } } ], 'question_order' : ['metabolite','protein'] }, { 'knowledge_map' : [ { 'node_bindings' : { 'metabolite' : 'KEGG:C00017', 'protein' : 'UniProtKB:Q9NZJ5' }, 'edge_bindings' : { } } ], 'question_order' : ['metabolite','protein'] } ] merged = SelectStatement.connect_knowledge_maps(responses,[ 'chemical_substance', 'disease', 'gene', 'metabolite', 'protein' ]) assert_lists_equal(ordered(merged), ordered([ { "node_bindings" : { "chemical_substance" : "CHEBI:100", "disease" : "MONDO:50", "gene" : "HGNC:1", "metabolite" : "KEGG:FOOBAR", "protein" : "UniProtKB:TESTING" }, "edge_bindings" : { "e0" : "ROOT_EDGE" } }, { "node_bindings" : { "chemical_substance" : "CHEBI:100", "disease" : "MONDO:50", "gene" : "HGNC:1", "metabolite" : "KEGG:C00017", "protein" : "UniProtKB:Q9NZJ5" }, "edge_bindings" : { "e0" : "ROOT_EDGE", "e1" : "TEST_EDGE", } } ]))
def test_ast_merge_results(requests_mock): set_mock(requests_mock, "workflow-5") """ Validate that -- Results from the query plan are being merged together correctly """ print("test_ast_merge_answers ()") tranql = TranQL() tranql.resolve_names = False ast = tranql.parse(""" SELECT cohort_diagnosis:disease->diagnoses:disease FROM '/clinical/cohort/disease_to_chemical_exposure' WHERE cohort_diagnosis = 'MONDO:0004979' --asthma AND Sex = '0' AND cohort = 'all_patients' AND max_p_value = '0.5' SET '$.knowledge_graph.nodes.[*].id' AS diagnoses """) select = ast.statements[0] # What is the proper format for the name of a mock file? This should be made into one mock_responses = [{ 'knowledge_graph': { 'nodes': [{ 'id': 'CHEBI:28177', 'type': 'chemical_substance' }, { 'id': 'HGNC:2597', 'type': 'gene' }], 'edges': [{ 'id': 'e0', 'source_id': 'CHEBI:28177', 'target_id': 'HGNC:2597' }] }, 'knowledge_map': [{ 'node_bindings': { 'chemical_substance': 'CHEBI:28177', 'gene': 'HGNC:2597' }, 'edge_bindings': { 'e1': ['e0'], 's0': '1cdd83d6-7f6b-4b17-9139-63f8e81f2122' }, 'score': 0.09722323258334348 }] }, { 'knowledge_graph': { 'nodes': [{ 'id': 'CHEBI:28177', 'type': 'chemical_substance' }, { 'id': 'TEST:00000', 'type': 'test' }], 'edges': [{ 'id': 'e0', 'source_id': 'CHEBI:28177', 'target_id': 'TEST:00000' }] }, 'knowledge_map': [{ 'node_bindings': { 'chemical_substance': 'CHEBI:28177', 'test': 'TEST:00000' }, 'edge_bindings': { 'e1': ['e0'], 's0': '1cdd83d6-7f6b-4b17-9139-63f8e81f2122' }, 'score': 0.09722323258334348 }] }] expected_result = { "knowledge_graph": { "edges": [{ "id": "e0", "source_id": "CHEBI:28177", "target_id": "HGNC:2597" }, { "id": "e0", "source_id": "CHEBI:28177", "target_id": "TEST:00000" }], "nodes": [{ "equivalent_identifiers": ["CHEBI:28177"], "id": "CHEBI:28177", "type": "chemical_substance" }, { "equivalent_identifiers": ["HGNC:2597"], "id": "HGNC:2597", "type": "gene" }, { "equivalent_identifiers": ["TEST:00000"], "id": "TEST:00000", "type": "test" }] }, "knowledge_map": [{ "edge_bindings": { "e1": ["e0"], "s0": "1cdd83d6-7f6b-4b17-9139-63f8e81f2122" }, "node_bindings": { "chemical_substance": "CHEBI:28177", "gene": "HGNC:2597" }, "score": 0.09722323258334348 }, { "edge_bindings": { "e1": ["e0"], "s0": "1cdd83d6-7f6b-4b17-9139-63f8e81f2122" }, "node_bindings": { "chemical_substance": "CHEBI:28177", "test": "TEST:00000" }, "score": 0.09722323258334348 }] } merged_results = select.merge_results(mock_responses, select.service, tranql) assert (merged_results == expected_result)