コード例 #1
0
#z=np.arange(0,10,.01)
#
#mat=[x,y,z]
#
#plt.plot(mat[0][0:100],mat[1][0:100])
#print(mat[1][5])


nb_part=1000
nb_pts_z=1000 #100 is nb of points vs z, to refine
#beam = np.empty(shape=[nb_part,100,6]) #100 is nb of points vs z, to refine

beam = np.empty(shape=[nb_pts_z,7,nb_part]) 

refE=160
ref_p = EtoP(refE)


for i in range(0,nb_part):
    it_z = 0
    
    z=0
    
    divX = np.random.normal(0,0.05)
    divY = np.random.normal(0,0.05)
    divX = 0.1 + np.random.uniform(-0.05,0.05)
    divY = np.random.uniform(-0.05,0.05)
    
    #divX = 0.1 + 0.05*np.random.choice([-1,0,1])
    #divY = 0.05*np.random.choice([-1,0,1])
    
コード例 #2
0
[Bx, By, Bz] = temp_df.iloc[0].loc[['Bx_T', 'By_T', 'Bz_T']]

nb_part = 1

nb_it_z = 300
Delta_z = 0.001

beam = np.empty(shape=[nb_it_z, nb_part, 6])

beam_ref = np.empty(shape=[nb_it_z, 6])
costheta_mat = np.empty(shape=[nb_it_z])
sintheta_mat = np.empty(shape=[nb_it_z])

refE = 150
refp = EtoP(refE)
ref_speed = PtoV(refp, 938)

# trajectory of reference particle
for it_z in range(0, nb_it_z):

    Delta_t = Delta_z / ref_speed

    By = 1

    [ref_x, ref_y, ref_z, ref_vx, ref_vy,
     ref_vz] = EOM_particle_in_Bfield(Delta_t, 0, 0, 0, 0, 0, ref_speed, 0, By)
    beam_ref[it_z, :] = [ref_x, ref_y, ref_z, ref_vx, ref_vy, ref_vz]
    #theta_ZX = -atan(ref_vx/ref_vz)
    costheta_mat[it_z] = 1 / sqrt(1 + (ref_vx / ref_vz)**2)
    sintheta_mat[it_z] = ref_vx / ref_vz / sqrt(1 + (ref_vx / ref_vz)**2)
コード例 #3
0
def run_from_transport(input_file = "C:/TRANS/for001.dat", nb_part=1000, \
                       N_segments = 10, kill_lost_particles = True, \
                       refE = 160, old_refE = 160, DeltaE=0, E_dist='uniform',  \
                       DeltaX = 10**-5, DeltaY = 10**-5, size_dist='cst', \
                       DeltaDivX = 0.05, DeltaDivY = 0.05, div_dist='uniform', \
                       gap = 0.03, k1 = 0.5, k2 = 0, \
                       paraxial_correction = False, dpzTolerance = 10**-4, \
                       plot_results = True, output_results=True):
    """
    Compute trajectories of protons in beamline defined in the Transport file 'input_file'
    
    Definition of inputs:
        
    input_file = Transport input file.
    nb_part = number of particles to generate
    N_segments = number of points that represent the particle trajectory in each magnet
    kill_lost_particles = boolean to determine if paticle trajectories are stopped when they hit an element in the beamline
    refE = reference energy of the particle
    old_refE = reference energy in the Transport file (in case magnetic fields need to be scaled)
    E_dist = Statistical distribution of particle energies (uniform', 'normal' or 'cst')
    DeltaX = beam extention in X plane
    DeltaY = beam extention in Y plane
    size_dist = Statistical distribution of the beam size (uniform', 'normal' or 'cst')
    DeltaDivX = divergence in X plane
    DeltaDivY = divergence in Y plane
    div_dist = Statistical distribution of the beam divergence (uniform', 'normal' or 'cst')
    gap = vertical gap of dipoles (useful if kill_lost_particles = True)
    k1, k2 = fringe field parameters (see Transport manual)
    paraxial_correction = Boolean to correct the effective field for diverging particles (increases computation time)
    dpzTolerance = tolerance on normalized magnetic field in paraxial correction
    plot_results = boolean 
    output_results = boolean
    
    
    Definition of outputs:
        
    sigmaX, sigmaY = spot size at isocenter
    eff_ESS_dEonE_1pc, eff_GTR_dEonE_1pc = ESS and GTR effieciency for a dE/E=1% (if DeltaE high enough in input)    
    """

    split_transport_file(input_file)

    ref_p = EtoP(refE)
    #Brho  = 1/300*sqrt(refE**2+2*938*refE)

    Brho_factor = Brho_scaling(old_refE, refE)

    gapX = gap  # case of CCT magnets

    ########################################

    nb_pts_z = transport_count_lines(input_file, N_segments)

    ###############################################################################
    # initial conditions

    beam = np.empty(shape=[nb_pts_z, 7, nb_part])

    for i in range(0, nb_part):

        # initialize particle properties

        z = 0
        it_z = 0

        if size_dist == 'uniform':
            sizeX = DeltaX * np.random.uniform(-1, 1)
            sizeY = DeltaY * np.random.uniform(-1, 1)
        elif size_dist == 'normal':
            sizeX = DeltaX * np.random.normal(0, 1)
            sizeY = DeltaY * np.random.normal(0, 1)
        elif size_dist == 'cst':
            sizeX = DeltaX * (i - nb_part / 2) / nb_part * 2
            sizeY = DeltaY * (i - nb_part / 2) / nb_part * 2
        else:
            raise Exception('Distribution chosen for "size_dist" is not valid')

        if div_dist == 'uniform':
            divX = DeltaDivX * np.random.uniform(-1, 1)
            divY = DeltaDivY * np.random.uniform(-1, 1)
        elif div_dist == 'normal':
            divX = DeltaDivX * np.random.normal(0, 1)
            divY = DeltaDivY * np.random.normal(0, 1)
        elif div_dist == 'cst':
            divX = DeltaDivX * (i - nb_part / 2) / nb_part * 2
            divY = DeltaDivY * (i - nb_part / 2) / nb_part * 2
        else:
            raise Exception('Distribution chosen for "div_dist" is not valid')

        if E_dist == 'uniform':
            E = refE + DeltaE * np.random.uniform(-1, 1)
        elif E_dist == 'normal':
            E = refE + DeltaE * np.random.normal(0, 1)
        elif E_dist == 'cst':
            E = refE + DeltaE * (i - nb_part / 2) / nb_part * 2
        else:
            raise Exception('Distribution chosen for "E_dist" is not valid')

        p = EtoP(E)
        dponp = (p - ref_p) / ref_p
        beam[0, :, i] = np.array([z, sizeX, divX, sizeY, divY, 0, dponp])

    ###############################################################################
    # extraction section
    last_z = beam[it_z, 0, :]
    last_itz = it_z

    for i in range(0, nb_part):
        it_z = last_itz

        [beam, it_z] = transport_input('transport_file_ESS.txt',
                                       beam,
                                       refE,
                                       i,
                                       N_segments,
                                       gap,
                                       k1,
                                       k2,
                                       last_z,
                                       last_itz,
                                       Brho_factor,
                                       kill_lost_particles,
                                       gap_X=gapX,
                                       paraxial_correction=paraxial_correction,
                                       dpz_tolerance=dpzTolerance)

    E_list_in = np.vectorize(PtoE)(ref_p * (1 + beam[0, 6, :]))
    dEonE_1pc = refE / 100
    nb_part_in_ESS_dEonE1pc = ((E_list_in < refE + dEonE_1pc) &
                               (E_list_in > refE - dEonE_1pc)).sum()
    nb_part_in_ESS_dEonE2pc = ((E_list_in < refE + 2 * dEonE_1pc) &
                               (E_list_in > refE - 2 * dEonE_1pc)).sum()

    E_list_out_ESS = np.vectorize(PtoE)(ref_p * (1 + beam[it_z, 6, :]))
    E_list_out_ESS[np.isnan(E_list_out_ESS)] = 0

    nb_part_out_ESS_dEonE1pc = ((E_list_out_ESS < refE + dEonE_1pc) &
                                (E_list_out_ESS > refE - dEonE_1pc)).sum()

    ###############################################################################
    # gantry section
    last_z = beam[it_z, 0, :]
    last_itz = it_z
    it_z_GTR = it_z

    for i in range(0, nb_part):
        it_z = last_itz
        [beam, it_z] = transport_input('transport_file_GTR.txt',
                                       beam,
                                       refE,
                                       i,
                                       N_segments,
                                       gap,
                                       k1,
                                       k2,
                                       last_z,
                                       last_itz,
                                       Brho_factor,
                                       kill_lost_particles,
                                       gap_X=gapX,
                                       dpz_tolerance=dpzTolerance)

    # make plots
    if plot_results:
        [sigmaX, sigmaY] = plot_beam(input_file, beam, it_z, it_z_GTR, ref_p)
    else:
        [sigmaX, sigmaY] = get_spot_size(it_z, beam)

    # output results
    if output_results:

        eff_ESS_dEonE_1pc = nb_part_out_ESS_dEonE1pc / max(
            nb_part_in_ESS_dEonE1pc, 1) * 100
        print('ESS efficiency within E range [ %0.2f , %0.2f ] = %0.2f %%' %
              (refE - dEonE_1pc, refE + dEonE_1pc, eff_ESS_dEonE_1pc))

        E_list_out_GTR = np.vectorize(PtoE)(ref_p * (1 + beam[it_z, 6, :]))
        E_list_out_GTR[np.isnan(E_list_out_GTR)] = 0

        nb_part_out_GTR_dEonE1pc = ((E_list_out_GTR < refE + dEonE_1pc) &
                                    (E_list_out_GTR > refE - dEonE_1pc)).sum()

        eff_GTR_dEonE_1pc = nb_part_out_GTR_dEonE1pc / max(
            nb_part_out_ESS_dEonE1pc, 1) * 100

        print('GTR efficiency within E range [ %0.2f , %0.2f ] = %0.2f %%' %
              (refE - dEonE_1pc, refE + dEonE_1pc, eff_GTR_dEonE_1pc))
        print('Total efficiency within E range [ %0.2f , %0.2f ] = %0.2f %%' %
              (refE - dEonE_1pc, refE + dEonE_1pc, nb_part_out_GTR_dEonE1pc /
               max(nb_part_in_ESS_dEonE1pc, 1) * 100))

        nb_part_out_GTR_dEonE2pc = (
            (E_list_out_GTR < refE + 2 * dEonE_1pc) &
            (E_list_out_GTR > refE - 2 * dEonE_1pc)).sum()
        eff_tot_dEonE_2pc = nb_part_out_GTR_dEonE2pc / max(
            nb_part_in_ESS_dEonE2pc, 1) * 100

        print('Total efficiency within E range [ %0.2f , %0.2f ] = %0.2f %%' %
              (refE - 2 * dEonE_1pc, refE + 2 * dEonE_1pc, eff_tot_dEonE_2pc))

    return [sigmaX, sigmaY, eff_ESS_dEonE_1pc, eff_GTR_dEonE_1pc]
コード例 #4
0
t0 = time.time()

plt.close('all')

# parameters
input_file = "C:/TRANS/for001.dat"
my_beamline = create_BL_from_Transport(input_file, CCT_angle = 0)



refE = 160
DeltaE = 1.6

# plot beamline
BL_geometry(my_beamline, refp=EtoP(refE))



index = my_beamline.get_element_index("ISO")
z_ISO = my_beamline.BL_df.loc[index,'z [m]']



#########################################################################
# plot beam through BL

max_offset = 0.002
offset_list = np.arange(-max_offset, max_offset + max_offset/10, max_offset/10)

# initialize dataframe to store the results
コード例 #5
0
    def __init__(self, nb_part=1000, \
                       refE = 160, DeltaE=0, E_dist='uniform',  \
                       DeltaX = 10**-5, DeltaY = 10**-5, size_dist='uniform', \
                       OffsetX = 0, OffsetY=0, \
                       DeltaDivX = 0.05, DeltaDivY = 0.05, div_dist='uniform', \
                       particle_type='proton'):
        """
        Initializes a beam with a set of nb_part particles
        
        The parameters for these particles are set statistically according to the inputs
        
        refE = central energy
        DeltaE = energy span around central energy
        E_dist = energy distribution with parameters refE, DeltaE. Possible distributions are cst, uniform, uniform2 (=uniform without random), normal
        DeltaX/DeltaY = spread size in X/Y
        OffsetX/Y = position offset in X/Y
        size_dist = position distribution with parameters refE, DeltaE. Possible distributions are cst, uniform, uniform2 (=uniform without random), normal
        DeltaDivX/Y = spread in divergence in X/Y
        div_dist = divergence distribution with parameters refE, DeltaE. Possible distributions are cst, uniform, uniform2 (=uniform without random), normal
        particle_type
        """

        # initialize empty list of particles
        self.particle_list = []

        for i in range(0, nb_part):
            # initialize particle properties
            if size_dist == 'cst':
                posX = DeltaX + OffsetX
                posY = DeltaY + OffsetY
            elif size_dist == 'normal':
                posX = DeltaX * np.random.normal(0, 1) + OffsetX
                posY = DeltaY * np.random.normal(0, 1) + OffsetY
            elif size_dist == 'uniform':
                posX = DeltaX * np.random.uniform(-1, 1) + OffsetX
                posY = DeltaY * np.random.uniform(-1, 1) + OffsetY
            elif size_dist == 'uniform2':
                #uniform distribution without randomness (to use on 1 variable max)
                posX = DeltaX * (i - nb_part / 2) / nb_part * 2 + OffsetX
                posY = DeltaY * (i - nb_part / 2) / nb_part * 2 + OffsetY
            else:
                raise Exception(
                    'Distribution chosen for "size_dist" is not valid')

            if div_dist == 'cst':
                divX = DeltaDivX
                divY = DeltaDivY
            elif div_dist == 'normal':
                divX = DeltaDivX * np.random.normal(0, 1)
                divY = DeltaDivY * np.random.normal(0, 1)
            elif div_dist == 'uniform':
                divX = DeltaDivX * np.random.uniform(-1, 1)
                divY = DeltaDivY * np.random.uniform(-1, 1)
            elif div_dist == 'uniform2':
                #uniform distribution without randomness (to use on 1 variable max)
                divX = DeltaDivX * (i - nb_part / 2) / nb_part * 2
                divY = DeltaDivY * (i - nb_part / 2) / nb_part * 2
            else:
                raise Exception(
                    'Distribution chosen for "div_dist" is not valid')

            if E_dist == 'cst':
                E = refE + DeltaE
            elif E_dist == 'normal':
                E = refE + DeltaE * np.random.normal(0, 1)
            elif E_dist == 'uniform':
                E = refE + DeltaE * np.random.uniform(-1, 1)
            elif E_dist == 'uniform2':
                E = refE + DeltaE * (i - nb_part / 2) / nb_part * 2
            else:
                raise Exception(
                    'Distribution chosen for "E_dist" is not valid')

            # create new particle
            new_particle = Particle(z=0, x=posX , y=posY, divX=divX, divY=divY, \
                                    dL=0, p=EtoP(E), refp=EtoP(refE), particle_type=particle_type)

            self.particle_list = self.particle_list + [new_particle]