コード例 #1
0
mfile = 'models/en2de.model.h5'

lr_scheduler = LRSchedulerPerStep(
    d_model, 4000)  # there is a warning that it is slow, however, it's ok.
#lr_scheduler = LRSchedulerPerEpoch(d_model, 4000, Xtrain.shape[0]/64)  # this scheduler only update lr per epoch
model_saver = ModelCheckpoint(mfile,
                              save_best_only=True,
                              save_weights_only=True)

s2s.compile(Adam(0.001, 0.9, 0.98, epsilon=1e-9))
s2s.model.summary()
try:
    s2s.model.load_weights(mfile)
except:
    print('\n\nnew model')

if 'test' in sys.argv:
    print(
        s2s.decode_sequence_fast('A black dog eats food .'.split(),
                                 delimiter=' '))
    while True:
        quest = input('> ')
        print(s2s.decode_sequence_fast(quest.split(), delimiter=' '))
        rets = s2s.beam_search(quest.split(), delimiter=' ')
        #for x, y in rets: print(x, y)
else:
    s2s.model.fit([Xtrain, Ytrain], None, batch_size=64, epochs=5, \
       validation_split=.1, \
       callbacks=[lr_scheduler, model_saver])
    rr = next(gen)
    print(rr[0][0].shape, rr[0][1].shape)
    rr = next(gen)
    print(rr[0][0].shape, rr[0][1].shape)
    s2s.compile(opt, active_layers=1)
    #s2s.model.fit_generator(gen, steps_per_epoch=2000, epochs=5, callbacks=[lr_scheduler, model_saver])
    s2s.model.fit_generator(gen,
                            steps_per_epoch=5,
                            epochs=1,
                            callbacks=[lr_scheduler, model_saver])
    s2s.compile(opt, active_layers=2)
    s2s.model.fit_generator(gen,
                            steps_per_epoch=5,
                            epochs=1,
                            callbacks=[lr_scheduler, model_saver])
    s2s.compile(opt, active_layers=3)
    s2s.model.fit_generator(gen,
                            steps_per_epoch=5,
                            epochs=1,
                            callbacks=[lr_scheduler, model_saver])
elif 'test' in cmds:
    print(
        s2s.decode_sequence_fast(
            'Two young , White males are outside near many bushes .'.split()))
    while True:
        quest = input('> ')
        print(s2s.decode_sequence_fast(quest.split()))
        rets = s2s.beam_search(quest.split())
        for x, y in rets:
            print(x, y)
コード例 #3
0
mfile = 'models/en2de.model.h5'

lr_scheduler = LRSchedulerPerStep(d_model, 4000)
model_saver = ModelCheckpoint(mfile,
                              save_best_only=True,
                              save_weights_only=True)

s2s.compile(Adam(0.001, 0.9, 0.98, epsilon=1e-9))
try:
    s2s.model.load_weights(mfile)
except:
    print('\n\nnew model')

if 'eval' in sys.argv:
    for x, y in s2s.beam_search('A black dog eats food .'.split(),
                                delimiter=' '):
        print(x, y)
    print(
        s2s.decode_sequence_readout('A black dog eats food .'.split(),
                                    delimiter=' '))
    print(
        s2s.decode_sequence_fast('A black dog eats food .'.split(),
                                 delimiter=' '))
    while True:
        quest = input('> ')
        print(s2s.decode_sequence_fast(quest.split(), delimiter=' '))
        rets = s2s.beam_search(quest.split(), delimiter=' ')
        for x, y in rets:
            print(x, y)
elif 'test' in sys.argv:
    import ljqpy