def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.roberta = RobertaModel(config) self.classifier_t1 = RobertaClassificationHead(config) self.classifier_t2 = RobertaClassificationHead(config)
def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.roberta = RobertaModel(config, add_pooling_layer=False) self.classifier = RobertaClassificationHead(config) self.specific_classifier = RobertaClassificationHead(config) self.init_weights()
def __init__(self, config): super().__init__(config) # self.num_labels_t1 = config.num_labels_t1 # self.num_labels_t2 = config.num_labels_t2 self.num_labels = config.num_labels self.num_labels_t1 = self.num_labels_t2 = self.num_labels self.roberta = RobertaModel(config) # config.num_labels = deepcopy(config.num_labels_t1) self.classifier_t1 = RobertaClassificationHead(config) # config.num_labels = deepcopy(config.num_labels_t2) self.classifier_t2 = RobertaClassificationHead(config)
def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.roberta = RobertaModel(config) self.tfidf = None self.max_length = config.max_length self.classifier = RobertaClassificationHead(config)
def __init__(self, config): super(RobertaForMultipleChoice, self).__init__(config) self.roberta = RobertaModel(config) self.classifier = RobertaClassificationHead(config) self.init_weights
def __init__(self, config): super(RobertaForXMLC, self).__init__(config) self.num_labels = config.num_labels self.roberta = RobertaModel(config) self.classifier = RobertaClassificationHead(config) self.loss_fct = HingeLoss(margin=1.0, squared=True)
def __init__(self, config, pos_weight=None): super(RobertaForMultiLabelSequenceClassification, self).__init__(config) self.num_labels = config.num_labels self.pos_weight = pos_weight self.roberta = RobertaModel(config) self.classifier = RobertaClassificationHead(config)
def __init__(self, config, weight=None): super(CamembertForSequenceClassification, self).__init__(config) self.num_labels = config.num_labels self.camembert = CamembertModel(config) self.classifier = RobertaClassificationHead(config) self.weight = weight
def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.trelm_roberta = TrelmRobertaModel(config) self.classifier = RobertaClassificationHead(config) self.init_weights()
def __init__(self, config, weight=None, sliding_window=False): super(RobertaForSequenceClassification, self).__init__(config) self.num_labels = config.num_labels self.roberta = RobertaModel(config) self.classifier = RobertaClassificationHead(config) self.weight = weight self.sliding_window = sliding_window
def __init__(self, config): super(ATM, self).__init__(config) self.num_labels = config.num_labels self.roberta = RobertaModelATM(config) # self.dropout = nn.Dropout(config.hidden_dropout_prob) # self.classifier = nn.Linear(config.hidden_size, self.num_labels) self.classifier = RobertaClassificationHead(config)
def __init__(self): super().__init__() config = RobertaConfig.from_pretrained('roberta-large', output_hidden_states=True) self.roberta = RobertaModel(config=config) config.num_labels = 1 self.classifier = RobertaClassificationHead(config=config) # self._debug = 1 self._debug = -1
def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.roberta = RobertaModel(config, add_pooling_layer=False) self.classifier_copa = RobertaClassificationHead(config) self.classifier_anli = RobertaClassificationHead(config) self.classifier_snli = RobertaClassificationHead(config) self.classifier_atomic = RobertaClassificationHead(config) self.classifier_social = RobertaClassificationHead(config) self.classifier_hella = RobertaClassificationHead(config) self.classifier_joci = RobertaClassificationHead(config) self.init_weights()
def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.roberta = RobertaModel(config) self.classifier = RobertaClassificationHead(config) self.lm_head = RobertaLMHead(config) self.init_weights() # These attributes should be assigned once the model is initialized self.model_args = None self.data_args = None self.label_word_list = None # For regression self.lb = None self.ub = None # For auto label search. self.return_full_softmax = None
def main(): parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--data_dir", default=None, type=str, required=True, help= "The input data dir. Should contain the .tsv files (or other data files) for the task.", ) parser.add_argument( "--model_type", default=None, type=str, required=True, help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()), ) parser.add_argument( "--model_name_or_path", default=None, type=str, required=True, help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS), ) parser.add_argument( "--task_name", default=None, type=str, required=True, help="The name of the task to train selected in the list: " + ", ".join(processors.keys()), ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help= "The output directory where the model predictions and checkpoints will be written.", ) # Other parameters parser.add_argument( "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name", ) parser.add_argument( "--tokenizer_name", default="", type=str, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--cache_dir", default="", type=str, help= "Where do you want to store the pre-trained models downloaded from s3", ) parser.add_argument( "--max_seq_length", default=128, type=int, help= "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded.", ) parser.add_argument("--do_train", action="store_true", help="Whether to run training.") parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.") parser.add_argument( "--evaluate_during_training", action="store_true", help="Run evaluation during training at each logging step.", ) parser.add_argument( "--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model.", ) parser.add_argument( "--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.", ) parser.add_argument( "--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation.", ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help= "Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.") parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument( "--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform.", ) parser.add_argument( "--max_steps", default=-1, type=int, help= "If > 0: set total number of training steps to perform. Override num_train_epochs.", ) parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") parser.add_argument("--logging_steps", type=int, default=500, help="Log every X updates steps.") parser.add_argument("--save_steps", type=int, default=500, help="Save checkpoint every X updates steps.") parser.add_argument( "--eval_all_checkpoints", action="store_true", help= "Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number", ) parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available") parser.add_argument( "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory", ) parser.add_argument( "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets", ) parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") parser.add_argument( "--fp16", action="store_true", help= "Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit", ) parser.add_argument( "--fp16_opt_level", type=str, default="O1", help= "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html", ) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument("--server_ip", type=str, default="", help="For distant debugging.") parser.add_argument("--server_port", type=str, default="", help="For distant debugging.") parser.add_argument( "--calc_final_alignments", action="store_true", help="Set this flag if you want to calculate final aligments.", ) parser.add_argument( "--calc_alignment_sim_mat", action="store_true", help="Set this flag if you want to calculate alignment_sim_mat.", ) args = parser.parse_args() if (os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir): raise ValueError( "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome." .format(args.output_dir)) # Setup distant debugging if needed if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() # Setup CUDA, GPU & distributed training if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = torch.cuda.device_count() else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend="nccl") args.n_gpu = 1 args.device = device # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16, ) # Set seed set_seed(args) # Prepare GLUE task args.task_name = args.task_name.lower() if args.task_name not in processors: raise ValueError("Task not found: %s" % (args.task_name)) processor = processors[args.task_name]() args.output_mode = output_modes[args.task_name] label_list = processor.get_labels() num_labels = len(label_list) # Load pretrained model and tokenizer if args.local_rank not in [-1, 0]: torch.distributed.barrier( ) # Make sure only the first process in distributed training will download model & vocab args.model_type = args.model_type.lower() config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type] if args.model_name_or_path != 'roberta-large-mnli': config = config_class.from_pretrained( args.config_name if args.config_name else args.model_name_or_path, num_labels=num_labels, finetuning_task=args.task_name, cache_dir=args.cache_dir if args.cache_dir else None, ) tokenizer = tokenizer_class.from_pretrained( args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case, cache_dir=args.cache_dir if args.cache_dir else None, ) model = model_class.from_pretrained( args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config, cache_dir=args.cache_dir if args.cache_dir else None, ) # for num_labels(mnli) if args.model_name_or_path == 'roberta-large-mnli': num_labels_old = config_class.from_pretrained( args.model_name_or_path)._num_labels config = config_class.from_pretrained( args.config_name if args.config_name else args.model_name_or_path, num_labels=num_labels_old, finetuning_task=args.task_name, cache_dir=args.cache_dir if args.cache_dir else None) tokenizer = tokenizer_class.from_pretrained( args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case, cache_dir=args.cache_dir if args.cache_dir else None) if num_labels != num_labels_old: config.num_labels = num_labels_old model = model_class.from_pretrained( args.model_name_or_path, from_tf=bool('.ckpt' in args.model_name_or_path), config=config, cache_dir=args.cache_dir if args.cache_dir else None) config.num_labels = num_labels logger.info('Reintializing model classifier layer...') model.num_labels = num_labels model.classifier = RobertaClassificationHead(config) else: model = model_class.from_pretrained( args.model_name_or_path, from_tf=bool('.ckpt' in args.model_name_or_path), config=config, cache_dir=args.cache_dir if args.cache_dir else None) # # num_added_toks = tokenizer.add_tokens(['[START]', '[END]']) # num_added_toks = tokenizer.add_special_tokens({'additional_special_tokens':['[START]', '[END]']}) # # num_added_toks = tokenizer.add_special_tokens({'additional_special_tokens': ['[CONTEXT]']}) # print('We have added', num_added_toks, 'tokens') # model.resize_token_embeddings(len(tokenizer)) if args.local_rank == 0: torch.distributed.barrier( ) # Make sure only the first process in distributed training will download model & vocab model.to(args.device) logger.info("Training/evaluation parameters %s", args) # Training if args.do_train: train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False) global_step, tr_loss = train(args, train_dataset, model, tokenizer) logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained() if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0): # Create output directory if needed if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]: os.makedirs(args.output_dir) logger.info("Saving model checkpoint to %s", args.output_dir) # Save a trained model, configuration and tokenizer using `save_pretrained()`. # They can then be reloaded using `from_pretrained()` model_to_save = (model.module if hasattr(model, "module") else model ) # Take care of distributed/parallel training model_to_save.save_pretrained(args.output_dir) tokenizer.save_pretrained(args.output_dir) # Good practice: save your training arguments together with the trained model torch.save(args, os.path.join(args.output_dir, "training_args.bin")) # Load a trained model and vocabulary that you have fine-tuned model = model_class.from_pretrained(args.output_dir) tokenizer = tokenizer_class.from_pretrained(args.output_dir) model.to(args.device) # Evaluation results = {} if args.do_eval and args.local_rank in [-1, 0]: tokenizer = tokenizer_class.from_pretrained( args.output_dir, do_lower_case=args.do_lower_case) checkpoints = [args.output_dir] if args.eval_all_checkpoints: checkpoints = list( os.path.dirname(c) for c in sorted( glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))) logging.getLogger("transformers.modeling_utils").setLevel( logging.WARN) # Reduce logging logger.info("Evaluate the following checkpoints: %s", checkpoints) for checkpoint in checkpoints: global_step = checkpoint.split( "-")[-1] if len(checkpoints) > 1 else "" prefix = checkpoint.split( "/")[-1] if checkpoint.find("checkpoint") != -1 else "" model = model_class.from_pretrained(checkpoint) model.to(args.device) result = evaluate(args, model, tokenizer, prefix=prefix, finalEval=True) result = dict( (k + "_{}".format(global_step), v) for k, v in result.items()) results.update(result) return results
def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.roberta = LongformerModel(config) self.classifier = RobertaClassificationHead(config)
def main(): parser = get_parser() args = parser.parse_args() if (os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir): raise ValueError( "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome." .format(args.output_dir)) if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]: os.makedirs(args.output_dir) # Setup distant debugging if needed if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() # Setup CUDA, GPU & distributed training if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count() else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend="nccl") args.n_gpu = 1 args.device = device # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16, ) # Set seed set_seed(args.seed) args.task_name = args.task_name.lower() if args.task_name not in processors: raise ValueError("Task not found: %s" % (args.task_name)) processor = processors[args.task_name]() args.output_mode = output_modes[args.task_name] label_list = processor.get_labels() num_labels = len(label_list) # Load pretrained model and tokenizer if args.local_rank not in [-1, 0]: torch.distributed.barrier( ) # Make sure only the first process in distributed training will download model & vocab args.model_type = args.model_type.lower() num_labels_old = AutoConfig.from_pretrained( args.model_name_or_path).num_labels config = AutoConfig.from_pretrained( args.config_name if args.config_name else args.model_name_or_path, num_labels=num_labels_old, finetuning_task=args.task_name, cache_dir=args.cache_dir if args.cache_dir else None, ) tokenizer = AutoTokenizer.from_pretrained( args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case, cache_dir=args.cache_dir if args.cache_dir else None, ) if args.model_type == "electra": model = ElectraForSequenceClassification.from_pretrained( args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config, cache_dir=args.cache_dir if args.cache_dir else None, ) else: model = AutoModelForSequenceClassification.from_pretrained( args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config, cache_dir=args.cache_dir if args.cache_dir else None, ) if num_labels != num_labels_old: config.num_labels = num_labels model.num_labels = num_labels if args.model_type in ["roberta", "bert", "electra"]: from transformers.modeling_roberta import RobertaClassificationHead model.classifier = (RobertaClassificationHead(config) if args.model_type == "roberta" else nn.Linear( config.hidden_size, config.num_labels)) for module in model.classifier.modules(): if isinstance(module, (nn.Linear, nn.Embedding)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=config.initializer_range) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() elif args.model_type == "bart": from transformers.modeling_bart import BartClassificationHead model.classification_head = BartClassificationHead( config.d_model, config.d_model, config.num_labels, config.classif_dropout, ) model.model._init_weights(model.classification_head.dense) model.model._init_weights(model.classification_head.out_proj) elif args.model_type == "xlnet": model.logits_proj = nn.Linear(config.d_model, config.num_labels) model.transformer._init_weights(model.logits_proj) else: raise NotImplementedError if args.local_rank == 0: torch.distributed.barrier( ) # Make sure only the first process in distributed training will download model & vocab if args.reinit_pooler: if args.model_type in ["bert", "roberta"]: encoder_temp = getattr(model, args.model_type) encoder_temp.pooler.dense.weight.data.normal_( mean=0.0, std=encoder_temp.config.initializer_range) encoder_temp.pooler.dense.bias.data.zero_() for p in encoder_temp.pooler.parameters(): p.requires_grad = True elif args.model_type in ["xlnet", "bart", "electra"]: raise ValueError( f"{args.model_type} does not have a pooler at the end") else: raise NotImplementedError if args.reinit_layers > 0: if args.model_type in ["bert", "roberta", "electra"]: assert args.reinit_pooler or args.model_type == "electra" from transformers.modeling_bert import BertLayerNorm encoder_temp = getattr(model, args.model_type) for layer in encoder_temp.encoder.layer[-args.reinit_layers:]: for module in layer.modules(): if isinstance(module, (nn.Linear, nn.Embedding)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_( mean=0.0, std=encoder_temp.config.initializer_range) elif isinstance(module, BertLayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() elif args.model_type == "xlnet": from transformers.modeling_xlnet import XLNetLayerNorm, XLNetRelativeAttention for layer in model.transformer.layer[-args.reinit_layers:]: for module in layer.modules(): if isinstance(module, (nn.Linear, nn.Embedding)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_( mean=0.0, std=model.transformer.config.initializer_range) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() elif isinstance(module, XLNetLayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, XLNetRelativeAttention): for param in [ module.q, module.k, module.v, module.o, module.r, module.r_r_bias, module.r_s_bias, module.r_w_bias, module.seg_embed, ]: param.data.normal_( mean=0.0, std=model.transformer.config.initializer_range) elif args.model_type == "bart": for layer in model.model.decoder.layers[-args.reinit_layers:]: for module in layer.modules(): model.model._init_weights(module) else: raise NotImplementedError if args.mixout > 0: from mixout import MixLinear for sup_module in model.modules(): for name, module in sup_module.named_children(): if isinstance(module, nn.Dropout): module.p = 0.0 if isinstance(module, nn.Linear): target_state_dict = module.state_dict() bias = True if module.bias is not None else False new_module = MixLinear(module.in_features, module.out_features, bias, target_state_dict["weight"], args.mixout) new_module.load_state_dict(target_state_dict) setattr(sup_module, name, new_module) print(model) model.to(args.device) logger.info("Training/evaluation parameters %s", args) # Training if args.do_train: train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False) global_step, tr_loss = train(args, train_dataset, model, tokenizer) logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained() if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0): logger.info("Saving model checkpoint to %s", args.output_dir) torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
def __init__(self, vocab: Vocabulary, pretrained_model: str = None, requires_grad: bool = True, transformer_weights_model: str = None, reset_classifier: bool = False, binary_loss: bool = False, layer_freeze_regexes: List[str] = None, on_load: bool = False, regularizer: Optional[RegularizerApplicator] = None) -> None: super().__init__(vocab, regularizer) if on_load: logging.info(f"Skipping loading of initial Transformer weights") transformer_config = RobertaConfig.from_pretrained( pretrained_model) self._transformer_model = RobertaModel(transformer_config) elif transformer_weights_model: logging.info( f"Loading Transformer weights model from {transformer_weights_model}" ) transformer_model_loaded = load_archive(transformer_weights_model) self._transformer_model = transformer_model_loaded.model._transformer_model else: self._transformer_model = RobertaModel.from_pretrained( pretrained_model) for name, param in self._transformer_model.named_parameters(): grad = requires_grad if layer_freeze_regexes and grad: grad = not any( [bool(re.search(r, name)) for r in layer_freeze_regexes]) param.requires_grad = grad transformer_config = self._transformer_model.config self._output_dim = transformer_config.hidden_size classifier_input_dim = self._output_dim classifier_output_dim = 1 transformer_config.num_labels = classifier_output_dim self._classifier = None if not on_load and transformer_weights_model \ and hasattr(transformer_model_loaded.model, "_classifier") \ and not reset_classifier: self._classifier = transformer_model_loaded.model._classifier old_dims = (self._classifier.dense.in_features, self._classifier.out_proj.out_features) new_dims = (classifier_input_dim, classifier_output_dim) if old_dims != new_dims: logging.info( f"NOT copying Transformer classifier weights, incompatible dims: {old_dims} vs {new_dims}" ) self._classifier = None if self._classifier is None: self._classifier = RobertaClassificationHead(transformer_config) self._binary_loss = binary_loss self._accuracy = CategoricalAccuracy() self._sigmoid = torch.nn.Sigmoid() if self._binary_loss: self._loss = torch.nn.BCEWithLogitsLoss() else: self._loss = torch.nn.CrossEntropyLoss() self._debug = 2 self._padding_value = 1 # The index of the RoBERTa padding token
def __init__(self, config): super(RobertaForXMLC, self).__init__(config) self.num_labels = config.num_labels self.roberta = RobertaModel(config) self.classifier = RobertaClassificationHead(config)